UZH-Logo

Intra-operative high frequency ultrasound improves surgery of intramedullary cavernous malformations


Bozinov, O; Burkhardt, J K; Woernle, C M; Hagel, V; Ulrich, N H; Krayenbühl, N; Bertalanffy, H (2012). Intra-operative high frequency ultrasound improves surgery of intramedullary cavernous malformations. Neurosurgical Review, 35(2):269-275.

Abstract

Intra-operative ultrasound (ioUS) is a very useful tool in surgery of spinal lesions. Here we focus on modern ioUS to analyze its use for localisation, visualisation and resection control in intramedullary cavernous malformations (IMCM). A series of 35 consecutive intradural lesions were operated in our hospital in a time period of 24 months using modern ioUS with a high frequency 7-15 MHz transducer and a true real time 3D transducer (both Phillips iU 22 ultrasound system). Six of those cases were treated with the admitting diagnosis of a deep IMCM (two cervical, four thoracic lesions). IoUS images were performed before and after the IMCM resection. Pre-operative and early postoperative MRI images were performed in all patients. In all six IMCM cases a complete removal of the lesion was achieved microsurgically resulting in an improved neurological status of all patients. High frequency ioUS emerged to be a very useful tool during surgery for localization and visualization. Excellent resection control by ultrasound was possible in three cases. Minor resolution of true real time 3D ioUS decreases the actual advantage of simultaneous reconstruction in two planes. High frequency ioUS is the best choice for intra-operative imaging in deep IMCM to localize and to visualize the lesion and to plan the perfect surgical approach. Additionally, high frequency ioUS is suitable for intra-operative resection control of the lesion in selected IMCM cases.

Intra-operative ultrasound (ioUS) is a very useful tool in surgery of spinal lesions. Here we focus on modern ioUS to analyze its use for localisation, visualisation and resection control in intramedullary cavernous malformations (IMCM). A series of 35 consecutive intradural lesions were operated in our hospital in a time period of 24 months using modern ioUS with a high frequency 7-15 MHz transducer and a true real time 3D transducer (both Phillips iU 22 ultrasound system). Six of those cases were treated with the admitting diagnosis of a deep IMCM (two cervical, four thoracic lesions). IoUS images were performed before and after the IMCM resection. Pre-operative and early postoperative MRI images were performed in all patients. In all six IMCM cases a complete removal of the lesion was achieved microsurgically resulting in an improved neurological status of all patients. High frequency ioUS emerged to be a very useful tool during surgery for localization and visualization. Excellent resection control by ultrasound was possible in three cases. Minor resolution of true real time 3D ioUS decreases the actual advantage of simultaneous reconstruction in two planes. High frequency ioUS is the best choice for intra-operative imaging in deep IMCM to localize and to visualize the lesion and to plan the perfect surgical approach. Additionally, high frequency ioUS is suitable for intra-operative resection control of the lesion in selected IMCM cases.

Citations

Altmetrics

Downloads

182 downloads since deposited on 11 Feb 2012
34 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:11 Feb 2012 17:22
Last Modified:05 Apr 2016 15:33
Publisher:Springer / Walter De Gruyter
ISSN:0344-5607 (P) 1437-2320 (E)
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s10143-011-0364-z
PubMed ID:22076678
Permanent URL: http://doi.org/10.5167/uzh-58128

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations