UZH-Logo

Maintenance Infos

Determinants of sensitivity to lovastatin-induced apoptosis in multiple myeloma


Wong, W Wei-Lynn; Clendening, J W; Martirosyan, A; Boutros, P C; Bros, C; Khosravi, F; Jurisica, I; Stewart, A K; Bergsagel, P L; Penn, L Z (2007). Determinants of sensitivity to lovastatin-induced apoptosis in multiple myeloma. Molecular Cancer Therapeutics, 6(6):1886-1897.

Abstract

Statins, commonly used to treat hypercholesterolemia, have been shown to trigger tumor-specific apoptosis in certain cancers, including multiple myeloma (MM), a plasma cell malignancy with poor prognosis. In this article, we show that of a panel of 17 genetically distinct MM cell lines, half were sensitive to statin-induced apoptosis and, despite pharmacodynamic evidence of drug uptake and activity, the remainder were insensitive. Sensitive cells were rescued from lovastatin-induced apoptosis by mevalonate, geranylgeranyl PPi, and partially by farnesyl PPi, highlighting the importance of isoprenylation. Expression profiling revealed that Rho GTPase mRNAs were differentially expressed upon lovastatin exposure in sensitive cells, yet ectopic expression of constitutively active Rho or Ras proteins was insufficient to alter sensitivity to lovastatin-induced apoptosis. This suggests that sensitivity involves more than one isoprenylated protein and that statins trigger apoptosis by blocking many signaling cascades, directly or indirectly deregulated by the oncogenic lesions of the tumor cell. Indeed, clustering on the basis of genetic abnormalities was shown to be significantly associated with sensitivity (P = 0.003). These results suggest that statins may be a useful molecular targeted therapy in the treatment of a subset of MM.

Statins, commonly used to treat hypercholesterolemia, have been shown to trigger tumor-specific apoptosis in certain cancers, including multiple myeloma (MM), a plasma cell malignancy with poor prognosis. In this article, we show that of a panel of 17 genetically distinct MM cell lines, half were sensitive to statin-induced apoptosis and, despite pharmacodynamic evidence of drug uptake and activity, the remainder were insensitive. Sensitive cells were rescued from lovastatin-induced apoptosis by mevalonate, geranylgeranyl PPi, and partially by farnesyl PPi, highlighting the importance of isoprenylation. Expression profiling revealed that Rho GTPase mRNAs were differentially expressed upon lovastatin exposure in sensitive cells, yet ectopic expression of constitutively active Rho or Ras proteins was insufficient to alter sensitivity to lovastatin-induced apoptosis. This suggests that sensitivity involves more than one isoprenylated protein and that statins trigger apoptosis by blocking many signaling cascades, directly or indirectly deregulated by the oncogenic lesions of the tumor cell. Indeed, clustering on the basis of genetic abnormalities was shown to be significantly associated with sensitivity (P = 0.003). These results suggest that statins may be a useful molecular targeted therapy in the treatment of a subset of MM.

Citations

26 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Jun 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2007
Deposited On:15 Jun 2012 15:49
Last Modified:05 Apr 2016 15:33
Publisher:American Association for Cancer Research, Inc.
ISSN:1535-7163 (P) 1538-8514 (E)
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1158/1535-7163.MCT-06-0745
PubMed ID:17575117
Permanent URL: http://doi.org/10.5167/uzh-58134

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 514kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations