UZH-Logo

How does cognition evolve? Phylogenetic comparative psychology


MacLean, E L; Matthews, L J; Hare, B A; Nunn, C L; Anderson, R C; Aureli, F; Brannon, E M; Call, J; Drea, C M; Emery, N J; Haun, D B M; Herrmann, E; Jacobs, L F; Platt, M L; Rosati, A G; Sandel, A A; Schroepfer, K K; Seed, A M; Tan, J; van Schaik, C P; Wobber, V (2012). How does cognition evolve? Phylogenetic comparative psychology. Animal Cognition, 15(2):223-238.

Abstract

Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

Citations

70 citations in Web of Science®
70 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

182 downloads since deposited on 09 Mar 2012
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Anthropological Institute and Museum
Dewey Decimal Classification:300 Social sciences, sociology & anthropology
Language:English
Date:2012
Deposited On:09 Mar 2012 15:11
Last Modified:05 Apr 2016 15:34
Publisher:Springer
ISSN:1435-9448
Publisher DOI:10.1007/s10071-011-0448-8
PubMed ID:21927850
Permanent URL: http://doi.org/10.5167/uzh-58534

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 533kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations