UZH-Logo

RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation


Codarri, L; Gyülvészi, G; Tosevski, V; Hesske, L; Fontana, A; Magnenat, L; Suter, T; Becher, B (2011). RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunology, 12(6):560-567.

Abstract

Although the role of the T(H)1 and T(H)17 subsets of helper T cells as disease mediators in autoimmune neuroinflammation remains a subject of some debate, none of their signature cytokines are essential for disease development. Here we report that interleukin 23 (IL-23) and the transcription factor RORγt drove expression of the cytokine GM-CSF in helper T cells, whereas IL-12, interferon-γ (IFN-γ) and IL-27 acted as negative regulators. Autoreactive helper T cells specifically lacking GM-CSF failed to initiate neuroinflammation despite expression of IL-17A or IFN-γ, whereas GM-CSF secretion by Ifng(-/-)Il17a(-/-) helper T cells was sufficient to induce experimental autoimmune encephalomyelitis (EAE). During the disease effector phase, GM-CSF sustained neuroinflammation via myeloid cells that infiltrated the central nervous system. Thus, in contrast to all other known helper T cell-derived cytokines, GM-CSF serves a nonredundant function in the initiation of autoimmune inflammation regardless of helper T cell polarization.

Although the role of the T(H)1 and T(H)17 subsets of helper T cells as disease mediators in autoimmune neuroinflammation remains a subject of some debate, none of their signature cytokines are essential for disease development. Here we report that interleukin 23 (IL-23) and the transcription factor RORγt drove expression of the cytokine GM-CSF in helper T cells, whereas IL-12, interferon-γ (IFN-γ) and IL-27 acted as negative regulators. Autoreactive helper T cells specifically lacking GM-CSF failed to initiate neuroinflammation despite expression of IL-17A or IFN-γ, whereas GM-CSF secretion by Ifng(-/-)Il17a(-/-) helper T cells was sufficient to induce experimental autoimmune encephalomyelitis (EAE). During the disease effector phase, GM-CSF sustained neuroinflammation via myeloid cells that infiltrated the central nervous system. Thus, in contrast to all other known helper T cell-derived cytokines, GM-CSF serves a nonredundant function in the initiation of autoimmune inflammation regardless of helper T cell polarization.

Citations

384 citations in Web of Science®
412 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Immunology
04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:09 Feb 2012 13:46
Last Modified:05 Apr 2016 15:35
Publisher:Nature Publishing Group
ISSN:1529-2908 (P) 1529-2916 (E)
Publisher DOI:10.1038/ni.2027
PubMed ID:21516112

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations