UZH-Logo

Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticular tenocytes from patients with knee joint osteoarthritis


Machner, A; Baier, A; Wille, A; Drynda, S; Pap, G; Drynda, A; Mawrin, C; Bühling, F; Gay, S; Neumann, W; Pap, T (2003). Higher susceptibility to Fas ligand induced apoptosis and altered modulation of cell death by tumor necrosis factor-alpha in periarticular tenocytes from patients with knee joint osteoarthritis. Arthritis Research & Therapy, 5(5):R253-R261.

Abstract

The aim of the present study was to investigate the expression of Fas in periarticular tenocytes of patients with osteoarthritis (OA) and to study their susceptibility to Fas ligand-mediated apoptosis. Tendon samples were obtained from the quadriceps femoris muscle of patients with knee OA and used for histological evaluation, for immunohistochemical detection of Fas, and to establish tenocyte cultures. The expression of Fas mRNA was determined by quantitative PCR. Levels of soluble Fas and soluble tumour necrosis factor (TNF) receptor I were measured using ELISA. Apoptosis was induced with recombinant human Fas ligand and measured by a histone fragmentation assay and flow cytometry. The effects of TNF-alpha were studied by stimulation with TNF-alpha alone or 24 hours before the induction of apoptosis. Tendon samples from non-OA patients were used as controls. Histological evaluation revealed degenerative changes in the tendons of all OA patients but not in the controls. Fas was detected by immunohistochemistry in all specimens, but quantitative PCR revealed significantly higher levels of Fas mRNA in OA tenocytes. In contrast, lower levels of soluble Fas were found in OA tenocytes by ELISA. OA tenocytes were significantly more susceptible to Fas ligand induced apoptosis than were control cells. TNF-alpha reduced the Fas ligand induced apoptosis in OA tenocytes but had no effects on control tenocytes. These data suggest that knee OA is associated with higher susceptibility of periarticular tenocytes to Fas ligand induced apoptosis because of higher expression of Fas but lower levels of apoptosis-inhibiting soluble Fas. These changes may contribute to decreased cellularity in degenerative tendons and promote their rupturing. The antiapoptotic effects of TNF-alpha in OA tenocytes most likely reflect regenerative attempts and must be taken into account when anti-TNF strategies are considered for OA.

The aim of the present study was to investigate the expression of Fas in periarticular tenocytes of patients with osteoarthritis (OA) and to study their susceptibility to Fas ligand-mediated apoptosis. Tendon samples were obtained from the quadriceps femoris muscle of patients with knee OA and used for histological evaluation, for immunohistochemical detection of Fas, and to establish tenocyte cultures. The expression of Fas mRNA was determined by quantitative PCR. Levels of soluble Fas and soluble tumour necrosis factor (TNF) receptor I were measured using ELISA. Apoptosis was induced with recombinant human Fas ligand and measured by a histone fragmentation assay and flow cytometry. The effects of TNF-alpha were studied by stimulation with TNF-alpha alone or 24 hours before the induction of apoptosis. Tendon samples from non-OA patients were used as controls. Histological evaluation revealed degenerative changes in the tendons of all OA patients but not in the controls. Fas was detected by immunohistochemistry in all specimens, but quantitative PCR revealed significantly higher levels of Fas mRNA in OA tenocytes. In contrast, lower levels of soluble Fas were found in OA tenocytes by ELISA. OA tenocytes were significantly more susceptible to Fas ligand induced apoptosis than were control cells. TNF-alpha reduced the Fas ligand induced apoptosis in OA tenocytes but had no effects on control tenocytes. These data suggest that knee OA is associated with higher susceptibility of periarticular tenocytes to Fas ligand induced apoptosis because of higher expression of Fas but lower levels of apoptosis-inhibiting soluble Fas. These changes may contribute to decreased cellularity in degenerative tendons and promote their rupturing. The antiapoptotic effects of TNF-alpha in OA tenocytes most likely reflect regenerative attempts and must be taken into account when anti-TNF strategies are considered for OA.

Citations

12 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

158 downloads since deposited on 11 Feb 2008
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2003
Deposited On:11 Feb 2008 12:12
Last Modified:05 Apr 2016 12:12
Publisher:BioMed Central
ISSN:1478-6354
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1186/ar789
Official URL:http://arthritis-research.com/content/pdf/ar789.pdf
PubMed ID:12932288
Permanent URL: http://doi.org/10.5167/uzh-59

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations