Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-5901

Ben Abdallah, N M; Slomianka, L; Lipp, H P (2007). Reversible effect of X-irradiation on proliferation, neurogenesis, and cell death in the dentate gyrus of adult mice. Hippocampus, 17(12):1230-1240.

[img] PDF - Registered users only
View at publisher


Therapeutic cranial X-irradiation causes cognitive deficits in adult and pediatric patients, in particular, when the exposed area includes the medial temporal lobes. Effects on adult neurogenesis within the hippocampus may be related to such deficits. To investigate this relation, we irradiated the brain of young adult C57Bl/6j mice with a single dose of 4 Gy at a dose-rate of 27.5 cGy/min. We observed an approximately 80% decrease in the number of cells immunoreactive for the proliferation marker Ki67, 16 and 48 h after exposure, which was restored to control values after 1 week. The number of doublecortin- and NeuroD-immunoreactive cells of neuronal lineage was reduced by 60-70% up to 1 week after irradiation, but not after 1 month. The number of pyknotic cells increased approximately 2.5 fold after 16 h, decreased to approximately 50% of control numbers after 48 h and 1 week, and was again at normal levels after 1 month. Granule cell number did not differ between different groups and time points. There was no apparent activation of microglia or astrocytes. Our findings consist of an acute and reversible effect of X-irradiation on proliferation, neurogenesis, and cell death. Transient changes of neurogenesis may play a role in transient impairments of cognitive performance of patients exposed to X-irradiation. We present an experimental approach to temporarily alter adult hippocampal neurogenesis (AhN), allowing mechanistic investigations of AhN and its relevance to cognitive performances. The work also represents a step toward optimized radiotherapy schedules.


31 citations in Web of Science®
31 citations in Scopus®
Google Scholar™



1 download since deposited on 15 Mar 2009
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:15 Mar 2009 18:37
Last Modified:05 Apr 2016 12:35
Publisher DOI:10.1002/hipo.20358
PubMed ID:17764075

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page