UZH-Logo

Maintenance Infos

Reversible effect of X-irradiation on proliferation, neurogenesis, and cell death in the dentate gyrus of adult mice


Ben Abdallah, N M; Slomianka, L; Lipp, H P (2007). Reversible effect of X-irradiation on proliferation, neurogenesis, and cell death in the dentate gyrus of adult mice. Hippocampus, 17(12):1230-1240.

Abstract

Therapeutic cranial X-irradiation causes cognitive deficits in adult and pediatric patients, in particular, when the exposed area includes the medial temporal lobes. Effects on adult neurogenesis within the hippocampus may be related to such deficits. To investigate this relation, we irradiated the brain of young adult C57Bl/6j mice with a single dose of 4 Gy at a dose-rate of 27.5 cGy/min. We observed an approximately 80% decrease in the number of cells immunoreactive for the proliferation marker Ki67, 16 and 48 h after exposure, which was restored to control values after 1 week. The number of doublecortin- and NeuroD-immunoreactive cells of neuronal lineage was reduced by 60-70% up to 1 week after irradiation, but not after 1 month. The number of pyknotic cells increased approximately 2.5 fold after 16 h, decreased to approximately 50% of control numbers after 48 h and 1 week, and was again at normal levels after 1 month. Granule cell number did not differ between different groups and time points. There was no apparent activation of microglia or astrocytes. Our findings consist of an acute and reversible effect of X-irradiation on proliferation, neurogenesis, and cell death. Transient changes of neurogenesis may play a role in transient impairments of cognitive performance of patients exposed to X-irradiation. We present an experimental approach to temporarily alter adult hippocampal neurogenesis (AhN), allowing mechanistic investigations of AhN and its relevance to cognitive performances. The work also represents a step toward optimized radiotherapy schedules.

Therapeutic cranial X-irradiation causes cognitive deficits in adult and pediatric patients, in particular, when the exposed area includes the medial temporal lobes. Effects on adult neurogenesis within the hippocampus may be related to such deficits. To investigate this relation, we irradiated the brain of young adult C57Bl/6j mice with a single dose of 4 Gy at a dose-rate of 27.5 cGy/min. We observed an approximately 80% decrease in the number of cells immunoreactive for the proliferation marker Ki67, 16 and 48 h after exposure, which was restored to control values after 1 week. The number of doublecortin- and NeuroD-immunoreactive cells of neuronal lineage was reduced by 60-70% up to 1 week after irradiation, but not after 1 month. The number of pyknotic cells increased approximately 2.5 fold after 16 h, decreased to approximately 50% of control numbers after 48 h and 1 week, and was again at normal levels after 1 month. Granule cell number did not differ between different groups and time points. There was no apparent activation of microglia or astrocytes. Our findings consist of an acute and reversible effect of X-irradiation on proliferation, neurogenesis, and cell death. Transient changes of neurogenesis may play a role in transient impairments of cognitive performance of patients exposed to X-irradiation. We present an experimental approach to temporarily alter adult hippocampal neurogenesis (AhN), allowing mechanistic investigations of AhN and its relevance to cognitive performances. The work also represents a step toward optimized radiotherapy schedules.

Citations

31 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2007
Deposited On:15 Mar 2009 18:37
Last Modified:05 Apr 2016 12:35
Publisher:Wiley-Blackwell
ISSN:1050-9631
Publisher DOI:10.1002/hipo.20358
PubMed ID:17764075
Permanent URL: http://doi.org/10.5167/uzh-5901

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations