UZH-Logo

Maintenance Infos

Early auditory sensory processing deficits in mouse mutants with reduced NMDA receptor function


Bickel, S; Lipp, H P; Umbricht, D (2007). Early auditory sensory processing deficits in mouse mutants with reduced NMDA receptor function. Neuropsychopharmacology, 33(7):1680-1689.

Abstract

Cognitive deficits in schizophrenia include impairments at automatic, preattentive stages of sensory information processing. These deficits are evident in the prepulse inhibition- (PPI) and habituation of the auditory startle response paradigm, the paired tone paradigm in the EEG, and the peak recovery function of auditory evoked potentials (AEP). Administration of NMDA receptor antagonists reliably disrupts PPI and habituation of the startle, but not gating of AEPs in rodents. In the peak recovery paradigm, patients with schizophrenia and primates treated with NMDA receptor antagonists show reduced maximal response at long interstimulus intervals (ISI), but normal responses at short ISIs. Thus reduced NMDA receptor signalling may underlie alterations in these paradigms observed in schizophrenia. We tested the paradigms mentioned in mouse mutants with reduced expression of the NR1 subunit of the NMDA receptor (N = 15) and their wild-type littermates (N = 16). The NR1 mutant mice showed impaired habituation and PPI of the auditory startle response, as well as impaired gating in the paired tone paradigm. Deficits between the two gating measures did not correlate, corroborating previous evidence that these paradigms measure distinct processes. In the peak recovery paradigm, the NR1 mutants showed increased responses of the AEPs P1 and N1 at short ISIs but no difference between groups were observed at long ISIs. In conclusion, the NR1 hypomorphic mice modelled sensory and sensorimotor gating and startle habituation deficits observed in schizophrenia, but failed to model alterations in the peak recovery function.

Cognitive deficits in schizophrenia include impairments at automatic, preattentive stages of sensory information processing. These deficits are evident in the prepulse inhibition- (PPI) and habituation of the auditory startle response paradigm, the paired tone paradigm in the EEG, and the peak recovery function of auditory evoked potentials (AEP). Administration of NMDA receptor antagonists reliably disrupts PPI and habituation of the startle, but not gating of AEPs in rodents. In the peak recovery paradigm, patients with schizophrenia and primates treated with NMDA receptor antagonists show reduced maximal response at long interstimulus intervals (ISI), but normal responses at short ISIs. Thus reduced NMDA receptor signalling may underlie alterations in these paradigms observed in schizophrenia. We tested the paradigms mentioned in mouse mutants with reduced expression of the NR1 subunit of the NMDA receptor (N = 15) and their wild-type littermates (N = 16). The NR1 mutant mice showed impaired habituation and PPI of the auditory startle response, as well as impaired gating in the paired tone paradigm. Deficits between the two gating measures did not correlate, corroborating previous evidence that these paradigms measure distinct processes. In the peak recovery paradigm, the NR1 mutants showed increased responses of the AEPs P1 and N1 at short ISIs but no difference between groups were observed at long ISIs. In conclusion, the NR1 hypomorphic mice modelled sensory and sensorimotor gating and startle habituation deficits observed in schizophrenia, but failed to model alterations in the peak recovery function.

Citations

29 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 15 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:June 2007
Deposited On:15 Mar 2009 19:10
Last Modified:05 Apr 2016 12:35
Publisher:Nature Publishing Group
ISSN:0006-3223
Publisher DOI:10.1038/sj.npp.1301536
PubMed ID:17712349
Permanent URL: http://doi.org/10.5167/uzh-5903

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations