UZH-Logo

Maintenance Infos

Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12


Gasser, I; Cardinale, M; Müller, H; Heller, S; Eberl, L; Lindenkamp, N; Kaddor, C; Steinbüchel, A; Berg, G (2011). Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant and Soil, 347(1-2):125-136.

Abstract

Members of the genus Burkholderia are highly versatile bacteria that can be beneficial as well as pathogenic for their eukaryotic hosts. Furthermore, many strains exhibit a remarkable biotechnological potential. To study the ecosystem function and lifestyle of B. terricola, we analysed the interactions with plants and survival in soil as well as the mechanisms behind it. We used a combination of in vitro and ad planta assays to study Burkholderia-plant interaction and assess the role of poly-beta-hydroxybutyrate (PHB). Additionally, DsRed-labelled bacteria were analysed by confocal laser scanning microscopy (CLSM) to study root colonisation. B. terricola ZR2-12 treatment resulted in enhanced growth of sugar beet plants with a more than doubled biomass relative to the non-treated control. The strain was a remarkable good root coloniser, which was found in rhizosphere as well as endorhiza of sugar beet up to 10 log(10) CFU g(-1). Using CLSM, we observed that ZR2-12 cells form large micro-colonies along the apoplastic spaces of the root. Xylem vessels were colonised by smaller aggregates and single cells, whereas in root tips mainly single cells were present. The colonisation patterns differed strongly between older and younger parts of the roots. PHB production of ZR2-12 (up to 70% (w/w) of cell dry mass) provided a competitive advantage for rhizosphere colonisation. B. terricola ZR2-12 belongs to the plant-associated Burkholderia cluster with biotechnological potential due to its excellent root colonisation and plant growth promotion.

Members of the genus Burkholderia are highly versatile bacteria that can be beneficial as well as pathogenic for their eukaryotic hosts. Furthermore, many strains exhibit a remarkable biotechnological potential. To study the ecosystem function and lifestyle of B. terricola, we analysed the interactions with plants and survival in soil as well as the mechanisms behind it. We used a combination of in vitro and ad planta assays to study Burkholderia-plant interaction and assess the role of poly-beta-hydroxybutyrate (PHB). Additionally, DsRed-labelled bacteria were analysed by confocal laser scanning microscopy (CLSM) to study root colonisation. B. terricola ZR2-12 treatment resulted in enhanced growth of sugar beet plants with a more than doubled biomass relative to the non-treated control. The strain was a remarkable good root coloniser, which was found in rhizosphere as well as endorhiza of sugar beet up to 10 log(10) CFU g(-1). Using CLSM, we observed that ZR2-12 cells form large micro-colonies along the apoplastic spaces of the root. Xylem vessels were colonised by smaller aggregates and single cells, whereas in root tips mainly single cells were present. The colonisation patterns differed strongly between older and younger parts of the roots. PHB production of ZR2-12 (up to 70% (w/w) of cell dry mass) provided a competitive advantage for rhizosphere colonisation. B. terricola ZR2-12 belongs to the plant-associated Burkholderia cluster with biotechnological potential due to its excellent root colonisation and plant growth promotion.

Citations

5 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 13 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2011
Deposited On:13 Mar 2012 12:08
Last Modified:05 Apr 2016 15:37
Publisher:Springer
ISSN:0032-079X
Publisher DOI:10.1007/s11104-011-0833-8
Permanent URL: http://doi.org/10.5167/uzh-59195

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 640kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations