Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-59195

Gasser, I; Cardinale, M; Müller, H; Heller, S; Eberl, L; Lindenkamp, N; Kaddor, C; Steinbüchel, A; Berg, G (2011). Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant and Soil, 347(1-2):125-136.

[img]Published Version
PDF - Registered users only
625Kb

Abstract

Members of the genus Burkholderia are highly versatile bacteria that can be beneficial as well as pathogenic for their eukaryotic hosts. Furthermore, many strains exhibit a remarkable biotechnological potential. To study the ecosystem function and lifestyle of B. terricola, we analysed the interactions with plants and survival in soil as well as the mechanisms behind it. We used a combination of in vitro and ad planta assays to study Burkholderia-plant interaction and assess the role of poly-beta-hydroxybutyrate (PHB). Additionally, DsRed-labelled bacteria were analysed by confocal laser scanning microscopy (CLSM) to study root colonisation. B. terricola ZR2-12 treatment resulted in enhanced growth of sugar beet plants with a more than doubled biomass relative to the non-treated control. The strain was a remarkable good root coloniser, which was found in rhizosphere as well as endorhiza of sugar beet up to 10 log(10) CFU g(-1). Using CLSM, we observed that ZR2-12 cells form large micro-colonies along the apoplastic spaces of the root. Xylem vessels were colonised by smaller aggregates and single cells, whereas in root tips mainly single cells were present. The colonisation patterns differed strongly between older and younger parts of the roots. PHB production of ZR2-12 (up to 70% (w/w) of cell dry mass) provided a competitive advantage for rhizosphere colonisation. B. terricola ZR2-12 belongs to the plant-associated Burkholderia cluster with biotechnological potential due to its excellent root colonisation and plant growth promotion.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Plant Biology
DDC:580 Plants (Botany)
Language:English
Date:2011
Deposited On:13 Mar 2012 13:08
Last Modified:29 Nov 2013 23:13
Publisher:Springer
ISSN:0032-079X
Publisher DOI:10.1007/s11104-011-0833-8
Citations:Web of Science®. Times Cited: 1
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page