Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Blom, D; Fabbri, C; Eberl, L; Weisskopf, L (2011). Volatile-mediated killing of Arabidopsis thaliana by Bacteria is mainly due to hydrogen cyanide. Applied and Environmental Microbiology, 77(3):1000-1008.

Full text not available from this repository.

View at publisher


The volatile-mediated impact of bacteria on plant growth is well documented, and contrasting effects have been reported ranging from 6-fold plant promotion to plant killing. However, very little is known about the identity of the compounds responsible for these effects or the mechanisms involved in plant growth alteration. We hypothesized that hydrogen cyanide (HCN) is a major factor accounting for the observed volatile-mediated toxicity of some strains. Using a collection of environmental and clinical strains differing in cyanogenesis, as well as a defined HCN-negative mutant, we demonstrate that bacterial HCN accounts to a significant extent for the deleterious effects observed when growing Arabidopsis thaliana in the presence of certain bacterial volatiles. The environmental strain Pseudomonas aeruginosa PUPa3 was less cyanogenic and less plant growth inhibiting than the clinical strain P. aeruginosa PAO1. Quorum-sensing deficient mutants of C. violaceum CV0, P. aeruginosa PAO1, and P. aeruginosa PUPa3 showed not only diminished HCN production but also strongly reduced volatile-mediated phytotoxicity. The double treatment of providing plants with reactive oxygen species scavenging compounds and overexpressing the alternative oxidase AOX1a led to a significant reduction of volatile-mediated toxicity. This indicates that oxidative stress is a key process in the physiological changes leading to plant death upon exposure to toxic bacterial volatiles.


36 citations in Web of Science®
38 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Deposited On:13 Mar 2012 12:32
Last Modified:05 Apr 2016 15:37
Publisher:American Society for Microbiology (ASM)
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1128/AEM.01968-10
PubMed ID:21115704

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page