UZH-Logo

Maintenance Infos

Experimental loss of menisci, cartilage and subchondral bone gradually increases anteroposterior knee laxity


Wieser, K; Betz, M; Farshad, M; Vich, M; Fucentese, S F; Meyer, D C (2012). Experimental loss of menisci, cartilage and subchondral bone gradually increases anteroposterior knee laxity. Knee Surgery, Sports Traumatology, Arthroscopy, 20(10):2100-2104.

Abstract

Purpose: Anteroposterior knee stability is a relevant factor for the decision-making process of various surgical procedures. In degenerative joints when the implantation of unicompartimental prostheses or corrective osteotomies of the limb are planned, the integrity of the anteroposterior stability with an intact ACL has been regarded as a necessary prerequisite. We hypothesise that joint degeneration, however, may influence the anteroposterior knee laxity. Therefore, we set out to test this hypothesis simulating a progressively ‘degenerated’ joint in an experimental cadaveric setting.

Methods: Twelve intact transfemorally resected Thiel-fixated cadaver knee joints were divided into 2 groups for manipulation in the medial or lateral compartment. In each knee, we performed (1) unilateral total meniscectomy; (2) simulation of advanced osteoarthritis, by unilateral total cartilage debridement; (3) simulation of a unilateral tibial impression fracture, by resection of 5 mm of the tibial plateau; (4) transection of the ACL. The KT-1000 arthrometer was used to measure the extent of anteroposterior translation at 30° of knee flexion.

Results: The mean value for tibial anteroposterior translation before intervention was 3.2 mm (SD: ±0.8). The mean translation after each intervention was 4.6 mm (SD: ±0.9; +44%; n.s.) after meniscectomy, 5.9 mm (SD: ±1.5; +84%; P < 0.05) after cartilage debridement, 8 mm (SD: ±1.5; +150%; P < 0.01) after bone debridement, and finally 9.7 mm (SD: ±2.2; +203%; P < 0.05) after resection of the ACL. There were no significant differences between the medial and lateral compartment.

Conclusion: In absence of massive osteophytes or capsular shrinkage, rapid loss of meniscus, cartilage and particularly loss of subchondral bone may result in a massive increase in anteroposterior translation, mimicking a tear of the ACL. In such a situation, a false positive impression of a ligamentous injury may arise, and decision making is falsely directed away from totally or partially knee joint-preserving procedures. Therefore, in degenerate joints, clinical evaluation of anteroposterior stability should rather rely on the presence of a firm stop than an overall increased joint translation.

Purpose: Anteroposterior knee stability is a relevant factor for the decision-making process of various surgical procedures. In degenerative joints when the implantation of unicompartimental prostheses or corrective osteotomies of the limb are planned, the integrity of the anteroposterior stability with an intact ACL has been regarded as a necessary prerequisite. We hypothesise that joint degeneration, however, may influence the anteroposterior knee laxity. Therefore, we set out to test this hypothesis simulating a progressively ‘degenerated’ joint in an experimental cadaveric setting.

Methods: Twelve intact transfemorally resected Thiel-fixated cadaver knee joints were divided into 2 groups for manipulation in the medial or lateral compartment. In each knee, we performed (1) unilateral total meniscectomy; (2) simulation of advanced osteoarthritis, by unilateral total cartilage debridement; (3) simulation of a unilateral tibial impression fracture, by resection of 5 mm of the tibial plateau; (4) transection of the ACL. The KT-1000 arthrometer was used to measure the extent of anteroposterior translation at 30° of knee flexion.

Results: The mean value for tibial anteroposterior translation before intervention was 3.2 mm (SD: ±0.8). The mean translation after each intervention was 4.6 mm (SD: ±0.9; +44%; n.s.) after meniscectomy, 5.9 mm (SD: ±1.5; +84%; P < 0.05) after cartilage debridement, 8 mm (SD: ±1.5; +150%; P < 0.01) after bone debridement, and finally 9.7 mm (SD: ±2.2; +203%; P < 0.05) after resection of the ACL. There were no significant differences between the medial and lateral compartment.

Conclusion: In absence of massive osteophytes or capsular shrinkage, rapid loss of meniscus, cartilage and particularly loss of subchondral bone may result in a massive increase in anteroposterior translation, mimicking a tear of the ACL. In such a situation, a false positive impression of a ligamentous injury may arise, and decision making is falsely directed away from totally or partially knee joint-preserving procedures. Therefore, in degenerate joints, clinical evaluation of anteroposterior stability should rather rely on the presence of a firm stop than an overall increased joint translation.

Citations

2 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

71 downloads since deposited on 05 Mar 2012
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:05 Mar 2012 11:30
Last Modified:05 Apr 2016 15:37
Publisher:Springer
ISSN:0942-2056
Publisher DOI:10.1007/s00167-011-1799-z
PubMed ID:22127512
Permanent URL: http://doi.org/10.5167/uzh-59311

Download

[img]
Filetype: PDF - Registered users only
Size: 267kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 842kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations