UZH-Logo

Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum β-lactamases (ESBL) in Enterobacteriaceae


Polsfuss, Silke; Bloemberg, Guido V; Giger, Jacqueline; Meyer, Vera; Böttger, Erik C; Hombach, Michael (2012). Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum β-lactamases (ESBL) in Enterobacteriaceae. Clinical Microbiology and Infection, 18(12):1194-1204.

Abstract

Clin Microbiol Infect ABSTRACT: This study aimed to develop a modular, diagnostic algorithm for extended spectrum β-lactamase (ESBL) detection in Enterobacteriaceae. Clinical Enterobacteriaceae strains (n = 2518) were screened for ESBL production using Clinical and Laboratory Standards Institute (CLSI) breakpoints for third-generation cephalosporins and by synergy image detection (clavulanic acid/extended-spectrum cephalosporins). Isolates screening positive for ESBL (n = 242, 108 by critical CLSI diameters alone, five by double disk synergy test (DDST) alone, and 129 by both critical diameters and DDST) and 138 ESBL screening negative isolates (control group) were investigated by molecular methods considered to be the reference standard (multiplex CTX-M type PCR, TEM and SHV type sequence characterization). One hundred and twenty-four out of 242 Enterobacteriaceae isolates screening positive for ESBL were confirmed to be ESBL positive by the reference standard, the majority of them in E. coli, K. pneumoniae and E. cloacae (94, 17 and nine isolates, respectively). Prevalence of ESBL production ranged from <1% for P. mirabilis to 4.7%, 5.1% and 6.6%, for K. pneumoniae, E. cloacae and E. coli, respectively. Combining CLSI ceftriaxone and cefpodoxime critical ESBL diameters was found to be the most sensitive phenotypic screening method (sensitivity 99.2%). Combining critical diameters of cefpodoxime and ceftriaxone with DDST for cefpodoxime resulted in a sensitivity of 100%. For phenotypic confirmation, combining the CLSI recommended combined disk test (CDT) for ceftazidime and cefotaxime amended with a cefepime CDT was highly sensitive (100%) and specific (97.5%). With respect to the studied population, the diagnostic ESBL algorithm developed would have resulted in sensitivity and specificity of 100%. The corresponding flow chart is simple, easy to use, inexpensive and applicable in the routine diagnostic laboratory.

Clin Microbiol Infect ABSTRACT: This study aimed to develop a modular, diagnostic algorithm for extended spectrum β-lactamase (ESBL) detection in Enterobacteriaceae. Clinical Enterobacteriaceae strains (n = 2518) were screened for ESBL production using Clinical and Laboratory Standards Institute (CLSI) breakpoints for third-generation cephalosporins and by synergy image detection (clavulanic acid/extended-spectrum cephalosporins). Isolates screening positive for ESBL (n = 242, 108 by critical CLSI diameters alone, five by double disk synergy test (DDST) alone, and 129 by both critical diameters and DDST) and 138 ESBL screening negative isolates (control group) were investigated by molecular methods considered to be the reference standard (multiplex CTX-M type PCR, TEM and SHV type sequence characterization). One hundred and twenty-four out of 242 Enterobacteriaceae isolates screening positive for ESBL were confirmed to be ESBL positive by the reference standard, the majority of them in E. coli, K. pneumoniae and E. cloacae (94, 17 and nine isolates, respectively). Prevalence of ESBL production ranged from <1% for P. mirabilis to 4.7%, 5.1% and 6.6%, for K. pneumoniae, E. cloacae and E. coli, respectively. Combining CLSI ceftriaxone and cefpodoxime critical ESBL diameters was found to be the most sensitive phenotypic screening method (sensitivity 99.2%). Combining critical diameters of cefpodoxime and ceftriaxone with DDST for cefpodoxime resulted in a sensitivity of 100%. For phenotypic confirmation, combining the CLSI recommended combined disk test (CDT) for ceftazidime and cefotaxime amended with a cefepime CDT was highly sensitive (100%) and specific (97.5%). With respect to the studied population, the diagnostic ESBL algorithm developed would have resulted in sensitivity and specificity of 100%. The corresponding flow chart is simple, easy to use, inexpensive and applicable in the routine diagnostic laboratory.

Citations

11 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 03 Apr 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:03 Apr 2012 09:24
Last Modified:05 Apr 2016 15:38
Publisher:Wiley-Blackwell
ISSN:1198-743X
Publisher DOI:10.1111/j.1469-0691.2011.03737.x
PubMed ID:22264296
Permanent URL: http://doi.org/10.5167/uzh-59451

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 195kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations