Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-59470

Piskoty, Gabor; Jäggin, Sabina; Michel, Silvain A; Weisse, Bernhard; Terrasi, Giovanni P; Fürst, Anton (2012). Resistance of equine tibiae and radii to side impact loads. Equine Veterinary Journal, 44(6):714-720.

[img]Published Version
PDF - Registered users only
View at publisher


Reasons for performing study: There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. Objectives: To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Methods: Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. Results: The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≅ 0.926 ·v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. Conclusions: The video-based measuring method allowed quantifying of the most relevant physical parameters, such as contact force and energy balance. Potential relevance: The results obtained should help with the development of bone implants and guards, supporting theoretical studies, and in the evaluation of bone injuries.


1 citation in Web of Science®
2 citations in Scopus®
Google Scholar™



3 downloads since deposited on 03 Apr 2012
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Equine Department
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Deposited On:03 Apr 2012 09:55
Last Modified:05 Apr 2016 15:38
Publisher DOI:10.1111/j.2042.3306.2012.00560.x
PubMed ID:22432596

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page