UZH-Logo

Maintenance Infos

Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane


Castorino, J J; Gallagher-Colombo, S M; Levin, A V; Fitzgerald, P G; Polishook, J; Kloeckener-Gruissem, B; Ostertag, E; Philp, N J (2011). Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Investigative Ophthalmology and Visual Science, 52(9):6774-6784.

Abstract

PURPOSE:
SLC16A12 encodes an orphan member of the monocarboxylate transporter family, MCT12. A nonsense mutation in SLC16A12 (c.643C>T; p.Q215X) causes juvenile cataract with a dominant inheritance pattern. In the present study, in vitro and in vivo experimental models were used to gain insight into how the SLC16A12 (c.643C>T) mutation leads to cataract formation.
METHODS:
MCT12 peptide antibodies were generated and used to examine the expression of MCT12 in the lens using immuno-confocal microscopy. To determine whether loss of Slc16a12 resulted in cataract formation, a Slc16a12 hypomorphic rat generated by transposon insertional mutagenesis was characterized using RT-PCR, slit lamp microscopy and histologic methods. Exogenous expression of MCT12 and MCT12:214Δ, a mimic of the mutant allele, were used to assess protein expression and trafficking.
RESULTS:
MCT12 protein was detected in the lens epithelium and secondary fiber cells at postnatal day 1. In the Slc16a12(TKO) rat, complete loss of MCT12 did not result in any detectable ocular phenotype. Exogenous expression of MCT12-GFP and MCT12:214Δ-GFP revealed that the full-length protein was trafficked to the plasma membrane (PM), whereas the truncated protein was retained in the endoplasmic reticulum (ER). When both MCT12 and MCT12:214Δ were coexpressed, to mimic the heterozygous patient genotype, the truncated protein was retained in the ER whereas full-length MCT12 was trafficked to the PM. Furthermore, MCT12 was identified as another MCT isoform that requires CD147 for trafficking to the cell surface.
CONCLUSIONS:
These data support a model whereby the SLC16A12 (c.643C>T) mutation causes juvenile cataract by a defect in protein trafficking rather than by haploinsufficiency.

Abstract

PURPOSE:
SLC16A12 encodes an orphan member of the monocarboxylate transporter family, MCT12. A nonsense mutation in SLC16A12 (c.643C>T; p.Q215X) causes juvenile cataract with a dominant inheritance pattern. In the present study, in vitro and in vivo experimental models were used to gain insight into how the SLC16A12 (c.643C>T) mutation leads to cataract formation.
METHODS:
MCT12 peptide antibodies were generated and used to examine the expression of MCT12 in the lens using immuno-confocal microscopy. To determine whether loss of Slc16a12 resulted in cataract formation, a Slc16a12 hypomorphic rat generated by transposon insertional mutagenesis was characterized using RT-PCR, slit lamp microscopy and histologic methods. Exogenous expression of MCT12 and MCT12:214Δ, a mimic of the mutant allele, were used to assess protein expression and trafficking.
RESULTS:
MCT12 protein was detected in the lens epithelium and secondary fiber cells at postnatal day 1. In the Slc16a12(TKO) rat, complete loss of MCT12 did not result in any detectable ocular phenotype. Exogenous expression of MCT12-GFP and MCT12:214Δ-GFP revealed that the full-length protein was trafficked to the plasma membrane (PM), whereas the truncated protein was retained in the endoplasmic reticulum (ER). When both MCT12 and MCT12:214Δ were coexpressed, to mimic the heterozygous patient genotype, the truncated protein was retained in the ER whereas full-length MCT12 was trafficked to the PM. Furthermore, MCT12 was identified as another MCT isoform that requires CD147 for trafficking to the cell surface.
CONCLUSIONS:
These data support a model whereby the SLC16A12 (c.643C>T) mutation causes juvenile cataract by a defect in protein trafficking rather than by haploinsufficiency.

Citations

10 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 10 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Molecular Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:10 Mar 2012 18:27
Last Modified:05 Apr 2016 15:38
Publisher:Association for Research in Vision and Ophthalmology
ISSN:0146-0404
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1167/iovs.10-6579
PubMed ID:21778275

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations