UZH-Logo

MLTreeMap - Maximum likelihood placement of environmental DNA sequence reads into curated reference phylogenies


Stark, M. MLTreeMap - Maximum likelihood placement of environmental DNA sequence reads into curated reference phylogenies. 2011, University of Zurich, Faculty of Science.

Abstract

Traditional microbiology has proven to be insufficient for studying entire microbial communities in situ, because only a small fraction of microbes can be grown in pure culture. The idea of circumventing this bottleneck by directly sequencing DNA from the environment led to a new field of research, called metagenomics. As a consequence of its approach, metagenomics provides a very unbiased view of all organisms contained in a sample, but it also has to cope with heavily fragmented sequence data. MLTreeMap, which is presented in this thesis, is a software framework designed to give insights into phylogenetic and functional properties of metagenomes and of the underlying microbial communities. It does so by detecting and phylotyping a series of relevant marker genes on the submitted DNA fragments. Among these genes are protein coding phylogenetic markers, 16S and 18S rRNA genes and markers for important functional pathways. Examples of the latter are genes coding for the key enzymes of photosynthesis, nitrogen fixation, methane fixation and ammonia oxidation. MLTreeMap is available as a web-server at http://mltreemap.org and also as a stand-alone version. It has been published in BMC Genomics in 2010 [1].

Traditional microbiology has proven to be insufficient for studying entire microbial communities in situ, because only a small fraction of microbes can be grown in pure culture. The idea of circumventing this bottleneck by directly sequencing DNA from the environment led to a new field of research, called metagenomics. As a consequence of its approach, metagenomics provides a very unbiased view of all organisms contained in a sample, but it also has to cope with heavily fragmented sequence data. MLTreeMap, which is presented in this thesis, is a software framework designed to give insights into phylogenetic and functional properties of metagenomes and of the underlying microbial communities. It does so by detecting and phylotyping a series of relevant marker genes on the submitted DNA fragments. Among these genes are protein coding phylogenetic markers, 16S and 18S rRNA genes and markers for important functional pathways. Examples of the latter are genes coding for the key enzymes of photosynthesis, nitrogen fixation, methane fixation and ammonia oxidation. MLTreeMap is available as a web-server at http://mltreemap.org and also as a stand-alone version. It has been published in BMC Genomics in 2010 [1].

Downloads

703 downloads since deposited on 16 Mar 2012
86 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Dissertation
Referees:von Mering C
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:German
Date:2011
Deposited On:16 Mar 2012 14:29
Last Modified:05 Apr 2016 15:38
Related URLs:http://opac.nebis.ch/F/?local_base=NEBIS&CON_LNG=GER&func=find-b&find_code=SYS&request=006529609
Permanent URL: http://doi.org/10.5167/uzh-59539

Download

[img]
Preview
Filetype: PDF
Size: 15MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations