UZH-Logo

Maintenance Infos

Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing


Bhambri, R; Bolch, T; Chaujar, R K; Kulshreshtha, S C (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203):543-556.

Abstract

Glacier outlines are mapped for the upper Bhagirathi and Saraswati/Alaknanda basins of the Garhwal Himalaya using Corona and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images acquired in 1968 and 2006, respectively. A subset of glaciers was also mapped using Landsat TM images acquired in 1990. Glacier area decreased from 599.9 ± 15.6 km2 (1968) to 572.5 ± 18.0 km2 (2006), a loss of 4.6 ± 2.8%. Glaciers in the Saraswati/Alaknanda basin and upper Bhagirathi basin lost 18.4 ± 9.0km2 (5.7±2.7%) and 9.0 ± 7.7km2 (3.3±2.8%), respectively, from 1968 to 2006. Garhwal Himalayan glacier retreat rates are lower than previously reported. More recently (1990–2006), recession rates have increased. The number of glaciers in the study region increased from 82 in 1968 to 88 in 2006 due to fragmentation of glaciers. Smaller glaciers (<1 km2) lost 19.4 ± 2.5% (0.51 ± 0.07% a–1) of their ice, significantly more than for larger glaciers (>50 km2) which lost 2.8 ± 2.7% (0.074 ± 0.071% a–1). From 1968 to 2006, the debris-covered glacier area increased by 17.8 ± 3.1% (0.46 ± 0.08% a–1) in the Saraswati/Alaknanda basin and 11.8 ± 3.0% (0.31 ± 0.08% a–1) in the upper Bhagirathi basin. Climate records from Mukhim (∼1900 m a.s.l.) and Bhojbasa (∼3780 m a.s.l.) meteorological stations were used to analyze climate conditions and trends, but the data are too limited to make firm conclusions regarding glacier–climate interactions.

Glacier outlines are mapped for the upper Bhagirathi and Saraswati/Alaknanda basins of the Garhwal Himalaya using Corona and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images acquired in 1968 and 2006, respectively. A subset of glaciers was also mapped using Landsat TM images acquired in 1990. Glacier area decreased from 599.9 ± 15.6 km2 (1968) to 572.5 ± 18.0 km2 (2006), a loss of 4.6 ± 2.8%. Glaciers in the Saraswati/Alaknanda basin and upper Bhagirathi basin lost 18.4 ± 9.0km2 (5.7±2.7%) and 9.0 ± 7.7km2 (3.3±2.8%), respectively, from 1968 to 2006. Garhwal Himalayan glacier retreat rates are lower than previously reported. More recently (1990–2006), recession rates have increased. The number of glaciers in the study region increased from 82 in 1968 to 88 in 2006 due to fragmentation of glaciers. Smaller glaciers (<1 km2) lost 19.4 ± 2.5% (0.51 ± 0.07% a–1) of their ice, significantly more than for larger glaciers (>50 km2) which lost 2.8 ± 2.7% (0.074 ± 0.071% a–1). From 1968 to 2006, the debris-covered glacier area increased by 17.8 ± 3.1% (0.46 ± 0.08% a–1) in the Saraswati/Alaknanda basin and 11.8 ± 3.0% (0.31 ± 0.08% a–1) in the upper Bhagirathi basin. Climate records from Mukhim (∼1900 m a.s.l.) and Bhojbasa (∼3780 m a.s.l.) meteorological stations were used to analyze climate conditions and trends, but the data are too limited to make firm conclusions regarding glacier–climate interactions.

Citations

64 citations in Web of Science®
70 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

211 downloads since deposited on 14 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2011
Deposited On:14 Mar 2012 15:18
Last Modified:05 Apr 2016 15:38
Publisher:International Glaciological Society
ISSN:0022-1430
Publisher DOI:10.3189/002214311796905604
Permanent URL: http://doi.org/10.5167/uzh-59593

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 900kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations