UZH-Logo

Maintenance Infos

Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis.


Egli, D; Selvaraj, A; Yepiskoposyan, H; Zhang, B; Hafen, E; Georgiev, Oleg; Schaffner, Walter (2003). Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. The EMBO Journal, 22(1):100-108.

Abstract

'Metal-responsive transcription factor-1' (MTF-1), a zinc finger protein, is conserved from mammals to insects. In the mouse, it activates metallothionein genes and other target genes in response to several cell stress conditions, notably heavy metal load. The knockout of MTF-1 in the mouse has an embryonic lethal phenotype accompanied by liver degeneration. Here we describe the targeted disruption of the MTF-1 gene in Drosophila by homologous recombination. Unlike the situation in the mouse, knockout of MTF-1 in Drosophila is not lethal. Flies survive well under laboratory conditions but are sensitive to elevated concentrations of copper, cadmium and zinc. Basal and metal-induced expression of Drosophila metallothionein genes MtnA (Mtn) and MtnB (Mto), and of two new metallothionein genes described here, MtnC and MtnD, is abolished in MTF-1 mutants. Unexpectedly, MTF-1 mutant larvae are sensitive not only to copper load but also to copper depletion. In MTF-1 mutants, copper depletion prevents metamorphosis and dramatically extends larval development/lifespan from normally 4-5 days to as many as 32 days, possibly reflecting the effects of impaired oxygen metabolism. These findings expand the roles of MTF-1 in the control of heavy metal homeostasis.

'Metal-responsive transcription factor-1' (MTF-1), a zinc finger protein, is conserved from mammals to insects. In the mouse, it activates metallothionein genes and other target genes in response to several cell stress conditions, notably heavy metal load. The knockout of MTF-1 in the mouse has an embryonic lethal phenotype accompanied by liver degeneration. Here we describe the targeted disruption of the MTF-1 gene in Drosophila by homologous recombination. Unlike the situation in the mouse, knockout of MTF-1 in Drosophila is not lethal. Flies survive well under laboratory conditions but are sensitive to elevated concentrations of copper, cadmium and zinc. Basal and metal-induced expression of Drosophila metallothionein genes MtnA (Mtn) and MtnB (Mto), and of two new metallothionein genes described here, MtnC and MtnD, is abolished in MTF-1 mutants. Unexpectedly, MTF-1 mutant larvae are sensitive not only to copper load but also to copper depletion. In MTF-1 mutants, copper depletion prevents metamorphosis and dramatically extends larval development/lifespan from normally 4-5 days to as many as 32 days, possibly reflecting the effects of impaired oxygen metabolism. These findings expand the roles of MTF-1 in the control of heavy metal homeostasis.

Citations

84 citations in Web of Science®
89 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

103 downloads since deposited on 11 Feb 2008
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2 January 2003
Deposited On:11 Feb 2008 12:16
Last Modified:05 Apr 2016 12:14
Publisher:European Molecular Biology Organization ; Nature Publishing Group
ISSN:0261-4189
Publisher DOI:10.1093/emboj/cdg012
PubMed ID:12505988
Permanent URL: http://doi.org/10.5167/uzh-596

Download

[img]
Preview
Filetype: PDF
Size: 400kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations