UZH-Logo

Maintenance Infos

Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits


Espinosa-Soto, C; Martin, O C; Wagner, A (2011). Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evolutionary Biology, 11:5.

Abstract

BACKGROUND: Many important evolutionary adaptations originate in the modification of gene regulatory circuits to produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity. Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic perturbations that include gene expression noise, environmental change, or epigenetic modification. RESULTS: We here analyze a well-studied model of gene regulatory circuits. A circuit's genotype encodes the regulatory interactions among circuit genes, and its phenotype corresponds to a stable gene activity pattern the circuit forms. For this model, we study how genotypes are arranged in genotype space, where the distance between two genotypes reflects the number of regulatory mutations that set those genotypes apart. Specifically, we address whether this arrangement favors adaptive evolution mediated by plasticity. We find that plasticity facilitates the origin of genotypes that produce a new phenotype in response to non-genetic perturbations. We also find that selection can then stabilize the new phenotype genetically, allowing it to become a circuit's dominant gene expression phenotype. These are generic properties of the circuits we study here. CONCLUSIONS: Taken together, our observations suggest that phenotypic plasticity frequently facilitates the evolution of novel beneficial gene activity patterns in gene regulatory circuits.

BACKGROUND: Many important evolutionary adaptations originate in the modification of gene regulatory circuits to produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity. Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic perturbations that include gene expression noise, environmental change, or epigenetic modification. RESULTS: We here analyze a well-studied model of gene regulatory circuits. A circuit's genotype encodes the regulatory interactions among circuit genes, and its phenotype corresponds to a stable gene activity pattern the circuit forms. For this model, we study how genotypes are arranged in genotype space, where the distance between two genotypes reflects the number of regulatory mutations that set those genotypes apart. Specifically, we address whether this arrangement favors adaptive evolution mediated by plasticity. We find that plasticity facilitates the origin of genotypes that produce a new phenotype in response to non-genetic perturbations. We also find that selection can then stabilize the new phenotype genetically, allowing it to become a circuit's dominant gene expression phenotype. These are generic properties of the circuits we study here. CONCLUSIONS: Taken together, our observations suggest that phenotypic plasticity frequently facilitates the evolution of novel beneficial gene activity patterns in gene regulatory circuits.

Citations

33 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

67 downloads since deposited on 11 Mar 2012
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:March 2011
Deposited On:11 Mar 2012 14:49
Last Modified:24 Nov 2016 10:31
Publisher:BioMed Central
ISSN:1471-2148
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2148-11-5
PubMed ID:21211007
Permanent URL: https://doi.org/10.5167/uzh-59824

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 892kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations