Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-59824

Espinosa-Soto, C; Martin, O C; Wagner, A (2011). Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evolutionary Biology, 11:1284-1297.

[img]
Preview
Published Version
PDF
892kB

Abstract

BACKGROUND:

Many important evolutionary adaptations originate in the modification of gene regulatory circuits to produce new gene activity phenotypes. How do evolving populations sift through an astronomical number of circuits to find circuits with new adaptive phenotypes? The answer may often involve phenotypic plasticity. Phenotypic plasticity allows a genotype to produce different - alternative - phenotypes after non-genetic perturbations that include gene expression noise, environmental change, or epigenetic modification.
RESULTS:

We here analyze a well-studied model of gene regulatory circuits. A circuit's genotype encodes the regulatory interactions among circuit genes, and its phenotype corresponds to a stable gene activity pattern the circuit forms. For this model, we study how genotypes are arranged in genotype space, where the distance between two genotypes reflects the number of regulatory mutations that set those genotypes apart. Specifically, we address whether this arrangement favors adaptive evolution mediated by plasticity. We find that plasticity facilitates the origin of genotypes that produce a new phenotype in response to non-genetic perturbations. We also find that selection can then stabilize the new phenotype genetically, allowing it to become a circuit's dominant gene expression phenotype. These are generic properties of the circuits we study here.
CONCLUSIONS:

Taken together, our observations suggest that phenotypic plasticity frequently facilitates the evolution of novel beneficial gene activity patterns in gene regulatory circuits.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
DDC:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:March 2011
Deposited On:11 Mar 2012 14:49
Last Modified:03 Dec 2013 13:55
Publisher:BioMed Central
ISSN:1471-2148
Publisher DOI:10.1186/1471-2148-11-5
PubMed ID:21211007
Citations:Web of Science®. Times Cited: 17
Google Scholar™
Scopus®. Citation Count: 22

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page