Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-59832

Naegeli, H; Fei, J; Kaczmarek, N; Luch, A; Glas, A; Carell, T (2011). Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biology, 9(10):e1001183.

[img]
Preview
Published Version
Creative Commons: Attribution 4.0 International (CC BY 4.0)
PDF
2MB
View at publisher

Abstract

How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin.

Citations

23 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

117 downloads since deposited on 21 Feb 2012
45 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:October 2011
Deposited On:21 Feb 2012 19:23
Last Modified:14 Jul 2016 08:23
Publisher:Public Library of Science (PLoS)
ISSN:1544-9173
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1371/journal.pbio.1001183
PubMed ID:22039351

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page