Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-59866

Rigozzi, S; Stemmer, A; Müller, R; Snedeker, J G (2011). Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy. Journal of Structural Biology, 176(1):9-15.

[img]Published Version (English)
PDF (Article in press) - Registered users only
800kB

Abstract

A precise analysis of the mechanical response of collagen fibrils in tendon tissue is critical to understanding the ultrastructural mechanisms that underlie collagen fibril interactions (load transfer), and ultimately tendon structure–function. This study reports a novel experimental approach combining macroscopic mechanical loading of tendon with a morphometric ultrascale assessment of longitudinal and cross-sectional collagen fibril deformations. An atomic force microscope was used to characterize diameters and periodic banding (D-period) of individual type-I collagen fibrils within murine Achilles tendons that were loaded to 0%, 5%, or 10% macroscopic nominal strain, respectively. D-period banding of the collagen fibrils increased with increasing tendon strain (2.1% increase at 10% applied tendon strain, p < 0.05), while fibril diameter decreased (8% reduction, p < 0.05). No statistically significant differences between 0% and 5% applied strain were observed, indicating that the onset of fibril (D-period) straining lagged macroscopically applied tendon strains by at least 5%. This confirms previous reports of delayed onset of collagen fibril stretching and the role of collagen fibril kinematics in supporting physiological tendon loads. Fibril strains within the tissue were relatively tightly distributed in unloaded and highly strained tendons, but were more broadly distributed at 5% applied strain, indicating progressive recruitment of collagen fibrils. Using these techniques we also confirmed that collagen fibrils thin appreciably at higher levels of macroscopic tendon strain. Finally, in contrast to prevalent tendon structure–function concepts data revealed that loading of the collagen network is fairly homogenous, with no apparent predisposition for loading of collagen fibrils according to their diameter.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
DDC:610 Medicine & health
Language:English
Date:2011
Deposited On:24 Feb 2012 20:56
Last Modified:13 Dec 2013 07:41
Publisher:Elsevier
ISSN:1047-8477
Publisher DOI:10.1016/j.jsb.2011.07.002
PubMed ID:21771659
Citations:Web of Science®. Times Cited: 10
Google Scholar™
Scopus®. Citation Count: 12

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page