UZH-Logo

Probing the dark matter issue in f(R)-gravity via gravitational lensing


Lubini, M; Tortora, C; Näf, J; Jetzer, P; Capozziello, S (2011). Probing the dark matter issue in f(R)-gravity via gravitational lensing. European Physical Journal C - Particles and Fields, 71(12):1834.

Abstract

For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.

For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.

Citations

8 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

73 downloads since deposited on 23 Feb 2012
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2011
Deposited On:23 Feb 2012 21:45
Last Modified:05 Apr 2016 15:40
Publisher:Springer
ISSN:1434-6044
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1140/epjc/s10052-011-1834-8
Related URLs:http://arxiv.org/abs/1104.2851
Permanent URL: http://doi.org/10.5167/uzh-59979

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 2)
Size: 213kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Version 1)
Size: 206kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations