UZH-Logo

Maintenance Infos

Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides


Neef, A B; Luedtke, N W (2011). Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 108(51):20404-20409.

Abstract

Commonly used metabolic labels for DNA, including 5-ethynyl-2′-deoxyuridine (EdU) and BrdU, are toxic antimetabolites that cause DNA instability, necrosis, and cell-cycle arrest. In addition to perturbing biological function, these properties can prevent metabolic labeling studies where subsequent tissue survival is needed. To bypass the metabolic pathways responsible for toxicity, while maintaining the ability to be metabolically incorporated into DNA, we synthesized and evaluated a small family of arabinofuranosyl-ethynyluracil derivatives. Among these, (2′S)-2′-deoxy-2′-fluoro-5-ethynyluridine (F-ara-EdU) exhibited selective DNA labeling, yet had a minimal impact on genome function in diverse tissue types. Metabolic incorporation of F-ara-EdU into DNA was readily detectable using copper(I)-catalyzed azide–alkyne “click” reactions with fluorescent azides. F-ara-EdU is less toxic than both BrdU and EdU, and it can be detected with greater sensitivity in experiments where long-term cell survival and/or deep-tissue imaging are desired. In contrast to previously reported 2′-arabino modified nucleosides and EdU, F-ara-EdU causes little or no cellular arrest or DNA synthesis inhibition. F-ara-EdU is therefore ideally suited for pulse-chase experiments aimed at “birth dating” DNA in vivo. As a demonstration, Zebrafish embryos were microinjected with F-ara-EdU at the one-cell stage and chased by BrdU at 10 h after fertilization. Following 3 d of development, complex patterns of quiescent/senescent cells containing only F-ara-EdU were observed in larvae along the dorsal side of the notochord and epithelia. Arabinosyl nucleoside derivatives therefore provide unique and effective means to introduce bioorthogonal functional groups into DNA for diverse applications in basic research, biotechnology, and drug discovery.

Commonly used metabolic labels for DNA, including 5-ethynyl-2′-deoxyuridine (EdU) and BrdU, are toxic antimetabolites that cause DNA instability, necrosis, and cell-cycle arrest. In addition to perturbing biological function, these properties can prevent metabolic labeling studies where subsequent tissue survival is needed. To bypass the metabolic pathways responsible for toxicity, while maintaining the ability to be metabolically incorporated into DNA, we synthesized and evaluated a small family of arabinofuranosyl-ethynyluracil derivatives. Among these, (2′S)-2′-deoxy-2′-fluoro-5-ethynyluridine (F-ara-EdU) exhibited selective DNA labeling, yet had a minimal impact on genome function in diverse tissue types. Metabolic incorporation of F-ara-EdU into DNA was readily detectable using copper(I)-catalyzed azide–alkyne “click” reactions with fluorescent azides. F-ara-EdU is less toxic than both BrdU and EdU, and it can be detected with greater sensitivity in experiments where long-term cell survival and/or deep-tissue imaging are desired. In contrast to previously reported 2′-arabino modified nucleosides and EdU, F-ara-EdU causes little or no cellular arrest or DNA synthesis inhibition. F-ara-EdU is therefore ideally suited for pulse-chase experiments aimed at “birth dating” DNA in vivo. As a demonstration, Zebrafish embryos were microinjected with F-ara-EdU at the one-cell stage and chased by BrdU at 10 h after fertilization. Following 3 d of development, complex patterns of quiescent/senescent cells containing only F-ara-EdU were observed in larvae along the dorsal side of the notochord and epithelia. Arabinosyl nucleoside derivatives therefore provide unique and effective means to introduce bioorthogonal functional groups into DNA for diverse applications in basic research, biotechnology, and drug discovery.

Citations

40 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 15 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2011
Deposited On:15 Mar 2012 08:44
Last Modified:05 Apr 2016 15:40
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1073/pnas.1101126108
Permanent URL: http://doi.org/10.5167/uzh-60044

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations