Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Oldham, S; Böhni, R; Stocker, H; Brogiolo, W; Hafen, E (2000). Genetic control of size in Drosophila. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1399):945-952.

Full text not available from this repository.

Abstract

During the past ten years, significant progress has been made in understanding the basic mechanisms of the development of multicellular organisms. Genetic analysis of the development of Caenorhabditis elegans and Drosophila has unearthed a fruitful number of genes involved in establishing the basic body plan, patterning of limbs, specification of cell fate and regulation of programmed cell death. The genes involved in these developmental processes have been conserved throughout evolution and homologous genes are involved in the patterning of insect and human limbs. Despite these important discoveries, we have learned astonishingly little about one of the most obvious distinctions between animals: their difference in body size. The mass of the smallest mammal, the bumble-bee bat, is 2 g while that of the largest mammal, the blue whale, is 150 t or 150 million grams. Remarkably, even though they are in the same class, body size can vary up to 75-million-fold. Furthermore, this body growth can be finite in the case of most vertebrates or it can occur continuously throughout life, as for trees, molluscs and large crustaceans. Currently, we know comparatively little about the genetic control of body size. In this article we will review recent evidence from vertebrates and particularly from Drosophila that implicates insulin/insulin-like growth factor-I and other growth pathways in the control of cell, organ and body size.

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
DDC:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:29 July 2000
Deposited On:11 Feb 2008 12:16
Last Modified:23 Nov 2012 15:54
Publisher:Royal Society Publishing
ISSN:0962-8436
Publisher DOI:10.1098/rstb.2000.0630
PubMed ID:11128988
Citations:Google Scholar™
Scopus®. Citation Count: 62

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page