UZH-Logo

Maintenance Infos

Humidity sensors based on ZnO/TiO(2) core/shell nanorod arrays with enhanced sensitivity


Gu, L; Zheng, K; Zhou, Y; Li, J; Mo, X; Patzke, G; Chen, G (2011). Humidity sensors based on ZnO/TiO(2) core/shell nanorod arrays with enhanced sensitivity. Sensors and Actuators B: Chemical, 159(1):1-7.

Abstract

Highly aligned arrays of ZnO/TiO(2) core/shell nanorods were fabricated on glass substrates by hydrothermal growth of ZnO nanorods cores followed by the deposition of anatase TiO(2) shells in a sol-gel process. The characterization of these composite materials with scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and transmission emission microscopy (TEM) points to the formation of crystalline ZnO nanorod cores that are coated with anatase TiO(2) shells. Humidity sensors based on these core/shell nanorod arrays exhibit outstanding sensitivities with capacitances varying from 10(1) to 10(6) pF over a relative humidity (RH) range of 11%-95% at room temperature, which is 1.5 and 3 orders of magnitude higher than that of pristine TiO(2) films and ZnO nanorods, respectively. Complex impedance analysis indicated that the enhanced humidity sensitivity is probably due to the high surface/volume ratio of this core/shell material in combination with the remarkable hydrophilicity of the TiO(2) shell. (C) 2011 Elsevier B.V. All rights reserved.

Abstract

Highly aligned arrays of ZnO/TiO(2) core/shell nanorods were fabricated on glass substrates by hydrothermal growth of ZnO nanorods cores followed by the deposition of anatase TiO(2) shells in a sol-gel process. The characterization of these composite materials with scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and transmission emission microscopy (TEM) points to the formation of crystalline ZnO nanorod cores that are coated with anatase TiO(2) shells. Humidity sensors based on these core/shell nanorod arrays exhibit outstanding sensitivities with capacitances varying from 10(1) to 10(6) pF over a relative humidity (RH) range of 11%-95% at room temperature, which is 1.5 and 3 orders of magnitude higher than that of pristine TiO(2) films and ZnO nanorods, respectively. Complex impedance analysis indicated that the enhanced humidity sensitivity is probably due to the high surface/volume ratio of this core/shell material in combination with the remarkable hydrophilicity of the TiO(2) shell. (C) 2011 Elsevier B.V. All rights reserved.

Citations

44 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

338 downloads since deposited on 05 Mar 2012
52 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:November 2011
Deposited On:05 Mar 2012 12:17
Last Modified:05 Apr 2016 15:42
Publisher:Elsevier
ISSN:0925-4005
Publisher DOI:https://doi.org/10.1016/j.snb.2010.12.024
Other Identification Number:ISI:000295745900001

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 630kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations