UZH-Logo

Maintenance Infos

Identifying significant facilitators of dark network evolution


Hu, Daning; Kaza, Siddharth; Chen, Hsinchun (2009). Identifying significant facilitators of dark network evolution. Journal of the American Society for Information Science and Technology, 60(4):655-665.

Abstract

Social networks evolve over time with the addition and removal of nodes and links to survive and thrive in their environments. Previous studies have shown that the link-formation process in such networks is influenced by a set of facilitators. However, there have been few empirical evaluations to determine the important facilitators. In a research partnership with law enforcement agencies, we used dynamic social-network analysis methods to examine several plausible facilitators of co-offending relationships in a large-scale narcotics network consisting of individuals and vehicles. Multivariate Cox regression and a two-proportion z-test on cyclic and focal closures of the network showed that mutual acquaintance and vehicle affiliations were significant facilitators for the network under study. We also found that homophily with respect to age, race, and gender were not good predictors of future link formation in these networks. Moreover, we examined the social causes and policy implications for the significance and insignificance of various facilitators including common jails on future co-offending. These findings provide important insights into the link-formation processes and the resilience of social networks. In addition, they can be used to aid in the prediction of future links. The methods described can also help in understanding the driving forces behind the formation and evolution of social networks facilitated by mobile and Web technologies.

Social networks evolve over time with the addition and removal of nodes and links to survive and thrive in their environments. Previous studies have shown that the link-formation process in such networks is influenced by a set of facilitators. However, there have been few empirical evaluations to determine the important facilitators. In a research partnership with law enforcement agencies, we used dynamic social-network analysis methods to examine several plausible facilitators of co-offending relationships in a large-scale narcotics network consisting of individuals and vehicles. Multivariate Cox regression and a two-proportion z-test on cyclic and focal closures of the network showed that mutual acquaintance and vehicle affiliations were significant facilitators for the network under study. We also found that homophily with respect to age, race, and gender were not good predictors of future link formation in these networks. Moreover, we examined the social causes and policy implications for the significance and insignificance of various facilitators including common jails on future co-offending. These findings provide important insights into the link-formation processes and the resilience of social networks. In addition, they can be used to aid in the prediction of future links. The methods described can also help in understanding the driving forces behind the formation and evolution of social networks facilitated by mobile and Web technologies.

Citations

7 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Date:2009
Deposited On:27 Jun 2012 14:43
Last Modified:05 Apr 2016 15:42
Publisher:Wiley-Blackwell / American Society for Information Science and Technology
ISSN:0002-8231
Publisher DOI:https://doi.org/10.1002/asi.21008
Other Identification Number:merlin-id:6374

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations