Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-60598

Blättler, F; Hahnloser, R H R (2011). An efficient coding hypothesis links sparsity and selectivity of neural responses. PLoS ONE, 6(10):e25506.

[img]
Preview
Published Version
PDF
1MB

View at publisher

Abstract

To what extent are sensory responses in the brain compatible with first-order principles? The efficient coding hypothesis projects that neurons use as few spikes as possible to faithfully represent natural stimuli. However, many sparsely firing neurons in higher brain areas seem to violate this hypothesis in that they respond more to familiar stimuli than to nonfamiliar stimuli. We reconcile this discrepancy by showing that efficient sensory responses give rise to stimulus selectivity that depends on the stimulus-independent firing threshold and the balance between excitatory and inhibitory inputs. We construct a cost function that enforces minimal firing rates in model neurons by linearly punishing suprathreshold synaptic currents. By contrast, subthreshold currents are punished quadratically, which allows us to optimally reconstruct sensory inputs from elicited responses. We train synaptic currents on many renditions of a particular bird's own song (BOS) and few renditions of conspecific birds' songs (CONs). During training, model neurons develop a response selectivity with complex dependence on the firing threshold. At low thresholds, they fire densely and prefer CON and the reverse BOS (REV) over BOS. However, at high thresholds or when hyperpolarized, they fire sparsely and prefer BOS over REV and over CON. Based on this selectivity reversal, our model suggests that preference for a highly familiar stimulus corresponds to a high-threshold or strong-inhibition regime of an efficient coding strategy. Our findings apply to songbird mirror neurons, and in general, they suggest that the brain may be endowed with simple mechanisms to rapidly change selectivity of neural responses to focus sensory processing on either familiar or nonfamiliar stimuli. In summary, we find support for the efficient coding hypothesis and provide new insights into the interplay between the sparsity and selectivity of neural responses.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

23 downloads since deposited on 03 Mar 2012
9 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
DDC:570 Life sciences; biology
Language:English
Date:October 2011
Deposited On:03 Mar 2012 21:14
Last Modified:12 Nov 2014 12:24
Publisher:Public Library of Science (PLoS)
Series Name:PLoS ONE
Number of Pages:0
ISSN:1932-6203
Publisher DOI:10.1371/journal.pone.0025506
PubMed ID:22022405

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page