UZH-Logo

Maintenance Infos

BOLD correlations to force in precision grip


Sulzer, J S; Chib, V S; Hepp-Reymond, M C; Gassert, R (2011). BOLD correlations to force in precision grip. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), Boston, MA, USA, 30 August 2011 - 3 September 2011, 2342-2346.

Abstract

The introduction of functional neuroimaging has resulted in a profusion of knowledge on various topics, including how blood oxygenation level dependent (BOLD) signal in the brain is related to force. To date, studies that have explicitly examined this relationship have used block designs. To gain a better understanding of the networks involved in human motor control, analyses sensitive to temporal relationships, such as Granger Causality or Dynamic Causal Modeling, require event-related designs. Therefore the goal of this experiment was to examine whether similar or even better relationships between BOLD and force during precision grip could be determined with an event-related design. Five healthy subjects exerted forces at 10%, 20% and 30% of maximum voluntary force, along with an observation condition. We report that the BOLD signal was linearly correlated with precision grip force in primary sensorimotor cortex and cerebellum, showing slightly better correlations than previous work. The results provide a clearer picture regarding the sensitivity of BOLD signal to force and show that event-related designs can be more appropriate than block designs in motor tasks.

Abstract

The introduction of functional neuroimaging has resulted in a profusion of knowledge on various topics, including how blood oxygenation level dependent (BOLD) signal in the brain is related to force. To date, studies that have explicitly examined this relationship have used block designs. To gain a better understanding of the networks involved in human motor control, analyses sensitive to temporal relationships, such as Granger Causality or Dynamic Causal Modeling, require event-related designs. Therefore the goal of this experiment was to examine whether similar or even better relationships between BOLD and force during precision grip could be determined with an event-related design. Five healthy subjects exerted forces at 10%, 20% and 30% of maximum voluntary force, along with an observation condition. We report that the BOLD signal was linearly correlated with precision grip force in primary sensorimotor cortex and cerebellum, showing slightly better correlations than previous work. The results provide a clearer picture regarding the sensitivity of BOLD signal to force and show that event-related designs can be more appropriate than block designs in motor tasks.

Citations

4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Event End Date:3 September 2011
Deposited On:09 Mar 2012 14:14
Last Modified:05 Apr 2016 15:43
Publisher:IEEE
Number of Pages:4
ISSN:1557-170X
ISBN:978-1-4244-4122-8;978-1-4244-4121-1
Additional Information:IEEE Engineering in Medicine and Biology Society. Conference Proceedings
Publisher DOI:https://doi.org/10.1109/IEMBS.2011.6090655

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations