UZH-Logo

The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins


Paulsen, K; Tauber, S; Timm, J; Goelz, N; Dumrese, C; Stolzing, A; Hass, R; Ullrich, O (2011). The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins. Cell Communication and Signaling, 9:33.

Abstract

In this study we investigated if and how cannabinoid receptor stimulation regulates macrophageal differentiation, which is one of the key steps in the immune effector reaction. For that reason, we used a well established differentiation model system of human U937 myelocytic leukemia cells that differentiate along the monocyte/macrophage lineage upon stimulation with the phorbol ester PMA. Constant cannabinoid receptor (CB) stimulation was performed using WIN55212-2, a potent synthetic CB agonist. We found that WIN55212-2 inhibited CB1/2-receptor-dependent PMA-induced differentiation of human myelocytic U937 cells into the macrophageal phenotype, which was associated with impaired vimentin, ICAM-1 and CD11b expression. In the presence of WIN55212-2, cdc2 protein and mRNA expression was progressively enhanced and Tyr-15-phosporylation of cdc2 was reduced in differentiating U937 cells. Additionally, p21Waf1/Cip1 expression was up-regulated. PMA-induced apoptosis was not enhanced by WIN55212-2 and differentiation-associated c-jun expression was not altered. In conclusion, we suppose that WIN55212-2-induced signals interferes with cell-cycle-arrest-signaling in differentiating myelocytic cells and thus inhibits macrophageal differentiation. Thus, it is possible that the cannabinoid system is able to influence one of the key steps in the immune effector function, the monocytic-macrophageal differentiation by alteration of cell cycle control proteins cdc2 and p21, and is therefore representing a promising option for therapeutic intervention in exacerbated immune reactions.

In this study we investigated if and how cannabinoid receptor stimulation regulates macrophageal differentiation, which is one of the key steps in the immune effector reaction. For that reason, we used a well established differentiation model system of human U937 myelocytic leukemia cells that differentiate along the monocyte/macrophage lineage upon stimulation with the phorbol ester PMA. Constant cannabinoid receptor (CB) stimulation was performed using WIN55212-2, a potent synthetic CB agonist. We found that WIN55212-2 inhibited CB1/2-receptor-dependent PMA-induced differentiation of human myelocytic U937 cells into the macrophageal phenotype, which was associated with impaired vimentin, ICAM-1 and CD11b expression. In the presence of WIN55212-2, cdc2 protein and mRNA expression was progressively enhanced and Tyr-15-phosporylation of cdc2 was reduced in differentiating U937 cells. Additionally, p21Waf1/Cip1 expression was up-regulated. PMA-induced apoptosis was not enhanced by WIN55212-2 and differentiation-associated c-jun expression was not altered. In conclusion, we suppose that WIN55212-2-induced signals interferes with cell-cycle-arrest-signaling in differentiating myelocytic cells and thus inhibits macrophageal differentiation. Thus, it is possible that the cannabinoid system is able to influence one of the key steps in the immune effector function, the monocytic-macrophageal differentiation by alteration of cell cycle control proteins cdc2 and p21, and is therefore representing a promising option for therapeutic intervention in exacerbated immune reactions.

Citations

4 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

47 downloads since deposited on 06 Mar 2012
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:06 Mar 2012 14:22
Last Modified:05 Apr 2016 15:44
Publisher:BioMed Central
ISSN:1478-811X
Publisher DOI:10.1186/1478-811X-9-33
PubMed ID:22204398
Permanent URL: http://doi.org/10.5167/uzh-61058

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations