UZH-Logo

Maintenance Infos

The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila.


van der Straten, A; Rommel, C; Dickson, B J; Hafen, E (1997). The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. The EMBO Journal, 16(8):1961-1969.

Abstract

The heat shock protein Hsp90 has been shown to associate with various cellular signalling proteins such as steroid hormone receptors, src-like kinases and the serine/threonine kinase Raf. While the interaction between steroid hormone receptors and Hsp90 appears to be essential for ligand binding and activation of the receptors, the role of Hsp90 in Raf activation is less clear. We have identified mutations in the hsp83 gene, the Drosophila homologue of hsp90, in a search for dominant mutations that attenuate signalling from Raf in the developing eye. The mutations result in single amino acid substitutions in the Hsp83 protein and cause a dominant-negative effect on the function of the wild-type protein. We show that both wild-type and mutant forms of Hsp83 bind to the activated Drosophila Raf but the mutant Hsp83 protein causes a reduction in the kinase activity of Raf. Our results indicate that Hsp83 is essential for Raf function in vivo.

The heat shock protein Hsp90 has been shown to associate with various cellular signalling proteins such as steroid hormone receptors, src-like kinases and the serine/threonine kinase Raf. While the interaction between steroid hormone receptors and Hsp90 appears to be essential for ligand binding and activation of the receptors, the role of Hsp90 in Raf activation is less clear. We have identified mutations in the hsp83 gene, the Drosophila homologue of hsp90, in a search for dominant mutations that attenuate signalling from Raf in the developing eye. The mutations result in single amino acid substitutions in the Hsp83 protein and cause a dominant-negative effect on the function of the wild-type protein. We show that both wild-type and mutant forms of Hsp83 bind to the activated Drosophila Raf but the mutant Hsp83 protein causes a reduction in the kinase activity of Raf. Our results indicate that Hsp83 is essential for Raf function in vivo.

Citations

100 citations in Web of Science®
108 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

52 downloads since deposited on 11 Feb 2008
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:15 April 1997
Deposited On:11 Feb 2008 12:16
Last Modified:05 Apr 2016 12:15
Publisher:European Molecular Biology Organization ; Nature Publishing Group
ISSN:0261-4189
Publisher DOI:10.1093/emboj/16.8.1961
PubMed ID:9155022
Permanent URL: http://doi.org/10.5167/uzh-615

Download

[img]
Preview
Filetype: PDF
Size: 518kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations