UZH-Logo

SELOVS: Brain MRSI localization based on highly selective T1- and B1-insensitive outer-volume suppression at 3T


Henning, A; Schär, M; Schulte, R F; Wilm, B; Pruessmann, K P; Boesiger, P (2008). SELOVS: Brain MRSI localization based on highly selective T1- and B1-insensitive outer-volume suppression at 3T. Magnetic Resonance in Medicine, 59(1):40.

Abstract

In vivo, high-field MR spectroscopic imaging (MRSI) profits from signal-to-noise ratio (SNR) gain and increased spectral resolution. However, bandwidth limitations of slice-selective excitation and refocusing pulses lead to strong chemical-shift displacement at high field strength when using conventional MRSI localization based on PRESS. Consequential metabolic information, particularly of border regions such as cortical brain tissue, is distorted. In addition, lipid contamination remains a major confound. To address these problems it is proposed to abandon PRESS selection and rely on a novel scheme of highly selective T(1)- and B(1)-insensitive outer-volume suppression in combination with slice-selective spin-echo acquisition for brain MRSI. Multiple cycles of overlapping suppression slabs are applied with flip angles optimized to account for tissue-dependent T(1) relaxation times and band crossings. Broadband frequency modulated saturation pulses with polynomial phase-response are utilized in order to minimize chemical-shift displacement. Efficacy of the outer-volume suppression sequence was simulated and evaluated in vitro and in vivo. Brain MRSI localization at 3T was significantly improved and reliable suppression of short-range lipid contamination enabled, leading to substantial enhancement of spectral quality, particularly in cortical tissue. Hence, the new method holds potential to expand the applicability of high-field MRSI to the entire brain.

In vivo, high-field MR spectroscopic imaging (MRSI) profits from signal-to-noise ratio (SNR) gain and increased spectral resolution. However, bandwidth limitations of slice-selective excitation and refocusing pulses lead to strong chemical-shift displacement at high field strength when using conventional MRSI localization based on PRESS. Consequential metabolic information, particularly of border regions such as cortical brain tissue, is distorted. In addition, lipid contamination remains a major confound. To address these problems it is proposed to abandon PRESS selection and rely on a novel scheme of highly selective T(1)- and B(1)-insensitive outer-volume suppression in combination with slice-selective spin-echo acquisition for brain MRSI. Multiple cycles of overlapping suppression slabs are applied with flip angles optimized to account for tissue-dependent T(1) relaxation times and band crossings. Broadband frequency modulated saturation pulses with polynomial phase-response are utilized in order to minimize chemical-shift displacement. Efficacy of the outer-volume suppression sequence was simulated and evaluated in vitro and in vivo. Brain MRSI localization at 3T was significantly improved and reliable suppression of short-range lipid contamination enabled, leading to substantial enhancement of spectral quality, particularly in cortical tissue. Hence, the new method holds potential to expand the applicability of high-field MRSI to the entire brain.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 04 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2008
Deposited On:04 Dec 2008 07:42
Last Modified:05 Apr 2016 12:36
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:10.1002/mrm.21374
PubMed ID:18050349
Permanent URL: http://doi.org/10.5167/uzh-6158

Download

[img]Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations