UZH-Logo

Compressed sensing in dynamic MRI


Gamper, U; Boesiger, P; Kozerke, S (2008). Compressed sensing in dynamic MRI. Magnetic Resonance in Medicine, 59(2):365-373.

Abstract

Recent theoretical advances in the field of compressive sampling-also referred to as compressed sensing (CS)-hold considerable promise for practical applications in MRI, but the fundamental condition of sparsity required in the CS framework is usually not fulfilled in MR images. However, in dynamic imaging, data sparsity can readily be introduced by applying the Fourier transformation along the temporal dimension assuming that only parts of the field-of-view (FOV) change at a high temporal rate while other parts remain stationary or change slowly. The second condition for CS, random sampling, can easily be realized by randomly skipping phase-encoding lines in each dynamic frame. In this work, the feasibility of the CS framework for accelerated dynamic MRI is assessed. Simulated datasets are used to compare the reconstruction results for different reduction factors, noise, and sparsity levels. In vivo cardiac cine data and Fourier-encoded velocity data of the carotid artery are used to test the reconstruction performance relative to k-t broad-use linear acquisition speed-up technique (k-t BLAST) reconstructions. Given sufficient data sparsity and base signal-to-noise ratio (SNR), CS is demonstrated to result in improved temporal fidelity compared to k-t BLAST reconstructions for the example data sets used in this work.

Recent theoretical advances in the field of compressive sampling-also referred to as compressed sensing (CS)-hold considerable promise for practical applications in MRI, but the fundamental condition of sparsity required in the CS framework is usually not fulfilled in MR images. However, in dynamic imaging, data sparsity can readily be introduced by applying the Fourier transformation along the temporal dimension assuming that only parts of the field-of-view (FOV) change at a high temporal rate while other parts remain stationary or change slowly. The second condition for CS, random sampling, can easily be realized by randomly skipping phase-encoding lines in each dynamic frame. In this work, the feasibility of the CS framework for accelerated dynamic MRI is assessed. Simulated datasets are used to compare the reconstruction results for different reduction factors, noise, and sparsity levels. In vivo cardiac cine data and Fourier-encoded velocity data of the carotid artery are used to test the reconstruction performance relative to k-t broad-use linear acquisition speed-up technique (k-t BLAST) reconstructions. Given sufficient data sparsity and base signal-to-noise ratio (SNR), CS is demonstrated to result in improved temporal fidelity compared to k-t BLAST reconstructions for the example data sets used in this work.

Citations

231 citations in Web of Science®
250 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 02 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2008
Deposited On:02 Dec 2008 16:53
Last Modified:05 Apr 2016 12:36
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:10.1002/mrm.21477
PubMed ID:18228595
Permanent URL: http://doi.org/10.5167/uzh-6161

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations