UZH-Logo

Maintenance Infos

Accelerated whole-heart 3D CSPAMM for myocardial motion quantification


Rutz, A; Ryf, S; Plein, S; Boesiger, P; Kozerke, S (2008). Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magnetic Resonance in Medicine, 59(4):755-763.

Abstract

Myocardial tissue tagging using complementary spatial modulation of magnetization (CSPAMM) allows detailed assessment of myocardial motion. To capture the complex 3D cardiac motion pattern, multiple 2D tagged slices are usually acquired in different orientations. These approaches are prone to slice misregistration and associated with long acquisition times. In this work, a fast method for acquiring 3D CSPAMM data is proposed that allows measuring deformation of the whole heart in three breath-holds of 18 heartbeats duration each. Three acquisitions are sequentially performed with line tag preparation in each orthogonal direction. Measurement acceleration is achieved by applying localized tagging preparation and a hybrid multishot, segmented echo-planar imaging sequence. Five healthy volunteers and five patients with myocardial infarction were measured. Midwall contours were tracked throughout the cardiac cycle with an enhanced variant of the harmonic phase (HARP) technique. Circumferential shortening at end-systole ranged from 14.1% (base) to 20.1% (apex) in healthy subjects. Hypokinetic regions in patients corresponded well with regions exhibiting hyperenhancement after contrast injection. Time to maximum circumferential shortening varied more significantly over the left ventricle in patients than in volunteers (P < 0.01). The proposed measurement scheme was well tolerated by patients and holds considerable potential to investigate cardiac mechanics in various diseases.

Abstract

Myocardial tissue tagging using complementary spatial modulation of magnetization (CSPAMM) allows detailed assessment of myocardial motion. To capture the complex 3D cardiac motion pattern, multiple 2D tagged slices are usually acquired in different orientations. These approaches are prone to slice misregistration and associated with long acquisition times. In this work, a fast method for acquiring 3D CSPAMM data is proposed that allows measuring deformation of the whole heart in three breath-holds of 18 heartbeats duration each. Three acquisitions are sequentially performed with line tag preparation in each orthogonal direction. Measurement acceleration is achieved by applying localized tagging preparation and a hybrid multishot, segmented echo-planar imaging sequence. Five healthy volunteers and five patients with myocardial infarction were measured. Midwall contours were tracked throughout the cardiac cycle with an enhanced variant of the harmonic phase (HARP) technique. Circumferential shortening at end-systole ranged from 14.1% (base) to 20.1% (apex) in healthy subjects. Hypokinetic regions in patients corresponded well with regions exhibiting hyperenhancement after contrast injection. Time to maximum circumferential shortening varied more significantly over the left ventricle in patients than in volunteers (P < 0.01). The proposed measurement scheme was well tolerated by patients and holds considerable potential to investigate cardiac mechanics in various diseases.

Citations

47 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 09 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2008
Deposited On:09 Dec 2008 16:04
Last Modified:05 Apr 2016 12:36
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.21363
PubMed ID:18383307

Download

[img]
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations