UZH-Logo

Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography


Lehmann, Dietrich; Faber, Pascal L; Tei, Shisei; Pascual-Marqui, Roberto D; Milz, Patricia; Kochi, Kieko (2012). Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. NeuroImage, 60(2):1574-1586.

Abstract

Brain functional states are established by functional connectivities between brain regions. In experienced meditators (13 Tibetan Buddhists, 15 QiGong, 14 Sahaja Yoga, 14 Ananda Marga Yoga, 15 Zen), 19-channel EEG was recorded before, during and after that meditation exercise which their respective tradition regards as route to the most desirable meditative state. The head surface EEG data were recomputed (sLORETA) into 19 cortical regional source model time series. All 171 functional connectivities between regions were computed as 'lagged coherence' for the eight EEG frequency bands (delta through gamma). This analysis removes ambiguities of localization, volume conduction-induced inflation of coherence, and reference-dependence. All significant differences (corrected for multiple testing) between meditation compared to no-task rest before and after meditation showed lower coherence during meditation, in all five traditions and eight (inhibitory as well as excitatory) frequency bands. Conventional coherence between the original head surface EEG time series very predominantly also showed reduced coherence during meditation. The topography of the functional connectivities was examined via PCA-based computation of principal connectivities. When going into and out of meditation, significantly different connectivities revealed clearly different topographies in the delta frequency band and minor differences in the beta-2 band. The globally reduced functional interdependence between brain regions in meditation suggests that interaction between the self process functions is minimized, and that constraints on the self process by other processes are minimized, thereby leading to the subjective experience of non-involvement, detachment and letting go, as well as of all-oneness and dissolution of ego borders during meditation.

Brain functional states are established by functional connectivities between brain regions. In experienced meditators (13 Tibetan Buddhists, 15 QiGong, 14 Sahaja Yoga, 14 Ananda Marga Yoga, 15 Zen), 19-channel EEG was recorded before, during and after that meditation exercise which their respective tradition regards as route to the most desirable meditative state. The head surface EEG data were recomputed (sLORETA) into 19 cortical regional source model time series. All 171 functional connectivities between regions were computed as 'lagged coherence' for the eight EEG frequency bands (delta through gamma). This analysis removes ambiguities of localization, volume conduction-induced inflation of coherence, and reference-dependence. All significant differences (corrected for multiple testing) between meditation compared to no-task rest before and after meditation showed lower coherence during meditation, in all five traditions and eight (inhibitory as well as excitatory) frequency bands. Conventional coherence between the original head surface EEG time series very predominantly also showed reduced coherence during meditation. The topography of the functional connectivities was examined via PCA-based computation of principal connectivities. When going into and out of meditation, significantly different connectivities revealed clearly different topographies in the delta frequency band and minor differences in the beta-2 band. The globally reduced functional interdependence between brain regions in meditation suggests that interaction between the self process functions is minimized, and that constraints on the self process by other processes are minimized, thereby leading to the subjective experience of non-involvement, detachment and letting go, as well as of all-oneness and dissolution of ego borders during meditation.

Citations

34 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

68 downloads since deposited on 19 Apr 2012
48 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > The KEY Institute for Brain-Mind Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:19 Apr 2012 08:51
Last Modified:05 Apr 2016 15:46
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:10.1016/j.neuroimage.2012.01.042
PubMed ID:22266174
Permanent URL: http://doi.org/10.5167/uzh-61702

Download

[img]
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 351kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations