UZH-Logo

Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods


Kozerke, S; Plein, S (2008). Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods. Journal of Cardiovascular Magnetic Resonance, 10:29:1-18.

Abstract

Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone.
With all acceleration techniques, careful consideration of the limits and the trade-off between acceleration and occurrence of artifacts that may arise if these limits are breached is required. In parallel imaging the spatially varying noise has to be considered when measuring contrast- and signal-to-noise ratios. Also, temporal fidelity in images reconstructed with prior knowledge driven methods has to be studied carefully.

Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone.
With all acceleration techniques, careful consideration of the limits and the trade-off between acceleration and occurrence of artifacts that may arise if these limits are breached is required. In parallel imaging the spatially varying noise has to be considered when measuring contrast- and signal-to-noise ratios. Also, temporal fidelity in images reconstructed with prior knowledge driven methods has to be studied carefully.

Citations

20 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

68 downloads since deposited on 25 Nov 2008
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2008
Deposited On:25 Nov 2008 13:55
Last Modified:05 Apr 2016 12:36
Publisher:BioMed Central
ISSN:1097-6647
Additional Information:Free full text article
Publisher DOI:10.1186/1532-429X-10-29
Official URL:http://www.jcmr-online.com/content/pdf/1532-429X-10-29.pdf
PubMed ID:18534005
Permanent URL: http://doi.org/10.5167/uzh-6175

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations