Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-61824

Jia, Yi; Suzuki, Norio; Yamamoto, Masayuki; Gassmann, Max; Noguchi, Constance Tom (2012). Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage. FASEB Journal, 26(7):2847-2858.

[img]Accepted Version
PDF - Registered users only
10MB

Abstract

Erythropoietin acts by binding to its cell surface receptor on erythroid progenitor cells to stimulate erythrocyte production. Erythropoietin receptor expression in nonhematopoietic tissue, including skeletal muscle progenitor cells, raises the possibility of a role for erythropoietin beyond erythropoiesis. Mice with erythropoietin receptor restricted to hematopoietic tissue were used to assess contributions of endogenous erythropoietin to promote skeletal myoblast proliferation and survival and wound healing in a mouse model of cardiotoxin induced muscle injury. Compared with wild-type controls, these mice had fewer skeletal muscle Pax-7(+) satellite cells and myoblasts that do not proliferate in culture, were more susceptible to skeletal muscle injury and reduced maximum load tolerated by isolated muscle. In contrast, mice with chronic elevated circulating erythropoietin had more Pax-7(+) satellite cells and myoblasts with increased proliferation and survival in culture, decreased muscle injury, and accelerated recovery of maximum load tolerated by isolated muscle. Skeletal muscle myoblasts also produced endogenous erythropoietin that increased at low O(2). Erythropoietin promoted proliferation, survival, and wound recovery in myoblasts via the phosphoinositide 3-kinase/AKT pathway. Therefore, endogenous and exogenous erythropoietin contribute to increasing satellite cell number following muscle injury, improve myoblast proliferation and survival, and promote repair and regeneration in this mouse induced muscle injury model independent of its effect on erythrocyte production.-Jia, Y., Suzuki, N., Yamamoto, M., Gassmann, M., Noguchi, C. T. Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:20 Apr 2012 08:13
Last Modified:27 Nov 2013 22:12
Publisher:Federation of American Societies for Experimental Biology
ISSN:0892-6638
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1096/fj.11-196618
PubMed ID:22490927
Citations:Web of Science®. Times Cited: 3
Google Scholar™
Scopus®. Citation Count: 6

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page