UZH-Logo

Species richness, environmental fluctuations, and temporal change in total community biomass


Petchey, Owen L; Casey, Tim; Jiang, Lin; McPhearson, P Timon; Price, Jennifer (2002). Species richness, environmental fluctuations, and temporal change in total community biomass. Oikos, 99(2):231-240.

Abstract

Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e. unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity variability relations.

Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e. unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity variability relations.

Citations

54 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 10 Jul 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2002
Deposited On:10 Jul 2012 15:03
Last Modified:05 Apr 2016 15:47
Publisher:Wiley-Blackwell
ISSN:0030-1299
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1034/j.1600-0706.2002.990203.x
Other Identification Number:Accession Number: WOS:000179715200003
Permanent URL: http://doi.org/10.5167/uzh-61852

Download

[img]
Filetype: PDF - Registered users only
Size: 281kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations