UZH-Logo

Maintenance Infos

Resistance mechanisms of gram-positive bacteria


Berger-Bächi, Brigitte (2002). Resistance mechanisms of gram-positive bacteria. International Journal of Medical Microbiology, 292(1):27-35.

Abstract

The introduction and increasing use of antibiotics for antibacterial therapy has initiated a rapid development and expansion of antibiotic resistance in microorganisms, particularly in human pathogens. Additionally, a shift to an increase in number and severity of Gram-positive infections has been observed the last decades. Common to these pathogens is their tendency to accumulate multiple resistances under antibiotic pressure and selection. Methicillin-resistant Staphylococcus aureus (MRSA), that have acquired multiresistance to all classes of antibiotics, have become a serious nosocomial problem. Recently, the emergence of the first MRSA with reduced vancomycin susceptibility evoked the specter of a totally resistant S. aureus. Problems with multiresistance expand also to penicillin-resistant Streptococcus pneumoniae that are partially or totally resistant to multiple antibiotics, and to vancomycin-resistant Enterococcus ssp., completely resistant to all commonly used antibiotics. The rapid development of resistance is due to mutational events and/or gene transfer and acquisition of resistance determinants, allowing strains to survive antibiotic treatment.

The introduction and increasing use of antibiotics for antibacterial therapy has initiated a rapid development and expansion of antibiotic resistance in microorganisms, particularly in human pathogens. Additionally, a shift to an increase in number and severity of Gram-positive infections has been observed the last decades. Common to these pathogens is their tendency to accumulate multiple resistances under antibiotic pressure and selection. Methicillin-resistant Staphylococcus aureus (MRSA), that have acquired multiresistance to all classes of antibiotics, have become a serious nosocomial problem. Recently, the emergence of the first MRSA with reduced vancomycin susceptibility evoked the specter of a totally resistant S. aureus. Problems with multiresistance expand also to penicillin-resistant Streptococcus pneumoniae that are partially or totally resistant to multiple antibiotics, and to vancomycin-resistant Enterococcus ssp., completely resistant to all commonly used antibiotics. The rapid development of resistance is due to mutational events and/or gene transfer and acquisition of resistance determinants, allowing strains to survive antibiotic treatment.

Citations

30 citations in Web of Science®
45 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2002
Deposited On:20 Jul 2012 21:10
Last Modified:05 Apr 2016 15:47
Publisher:Elsevier
ISSN:1438-4221
Publisher DOI:10.1078/1438-4221-00185
PubMed ID:12139425

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations