The ‘Azirine/Oxazolone Method’ on solid phase: Introduction of various alpha,alpha-disubstituted alpha-Amino Acids

Stamm, Simon; Linden, Anthony; Heimgartner, Heinz

Abstract: Peptides containing various alpha,alpha-disubstituted alpha-amino acids, such as alpha-aminoisobutyric acid (Aib), 1-aminocyclopentane-1-carboxylic acid, alpha-methylphenylalanine, and 3-amino-3,4,5,6-tetrahydro-2Hpyran-3-carboxylic acid have been synthesized from the N- to the C-terminus by the ‘azirine/oxazolone method’ under solid-phase conditions. In this convenient method for the synthesis of sterically demanding peptides on solid-phase, 2H-azirin-3-amines are used to introduce the alpha,alpha-disubstituted alpha-amino acids without the need for additional reagents. Furthermore, the synthesis of poly(Aib) sequences has been explored.

DOI: https://doi.org/10.1002/hlca.200690019

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-62074
Accepted Version

Originally published at:
DOI: https://doi.org/10.1002/hlca.200690019
The ‘Azirine/Oxazolone Method’ on Solid-Phase: Introduction of Various
\(\alpha,\alpha\)-Disubstituted \(\alpha\)-Amino Acids

by Simon Stamm\(^1\), Anthony Linden and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190,
CH-8057 Zürich, Switzerland.

\(^1\) Part of the projected Ph.D. thesis of S. S., Universität Zürich.
Peptides containing various α,α-disubstituted α-amino acids, such as α-aminoisobutyric acid (Aib), 1-aminocyclopentane-1-carboxylic acid, α-methylphenylalanine, and 3-aminotetrahydro-$2H$-pyran-3-carboxylic acid have been synthesized from the N- to the C-terminus by means of the ‘azirine/oxazolone method’ under solid-phase conditions. In this convenient method for the synthesis of sterically demanding peptides on solid-phase, $2H$-azirin-3-amines are used to introduce the α,α-disubstituted α-amino acids without the need of additional reagents. Furthermore, the synthesis of poly-Aib sequences has been explored.
1. Introduction. – Due to the restrictions in their conformational freedom, \(\alpha,\alpha\)-disubstituted \(\alpha\)-amino acid containing peptides form stabilized secondary structures, such as \(\beta\)-turns and helices [1–4]. One useful method for the introduction of \(\alpha,\alpha\)-disubstituted \(\alpha\)-amino acids into peptides is the ‘azirine/oxazolone method’ [5–7]. Thus, the reaction of 2\(H\)-azirin-3-amines, \textit{e.g.} the Aib synthon 1, with an amino or peptide acid proceeds smoothly and in high yield. The terminal amide bond of the resulting peptide amide can be hydrolyzed selectively to give the extended peptide acid. In solution-phase chemistry, the ‘azirine/oxazolone method’ has proven to be successful for the introduction of a multitude of sterically demanding \(\alpha,\alpha\)-disubstituted \(\alpha\)-amino acids into peptides, and it has found application in the synthesis of some antibiotic peptaibols or segments thereof [8–15].

Since solid-phase synthesis offers rapid access to peptides without the need for the isolation of the sometimes cumbersome peptide acid intermediates, we adapted the ‘azirine/oxazolone method’ to solid-phase conditions (\textit{Scheme 1}) [16].

\textit{Scheme 1}

In this convenient method for the synthesis of sterically demanding peptides on solid-phase, the first amino acid was attached through a carbamate linker to a \([4-(\text{hydroxymethyl})\text{phenyl}]\text{acetimidomethyl} \text{ (PAM) polystyrene resin} \text{ (2). Deprotection of the tBu ester 3 with TFA afforded resin 4, which was treated with a solution of } N,2,2\text{-trimethyl-}\text{N-phenyl-2\(H\)-azirin-3-amine} \text{ (1). Unconsumed 1 could easily be recovered and reused. Selective hydrolysis of the terminal amide} \)
with 3 M HCl in THF/H₂O afforded peptide acid resin 6. Further extension of the peptide chain could be achieved either with a tBu ester protected amino acid and a coupling reagent, e.g. PyBOP, or with 1. Cleavage from the resin was achieved with HBr (33%) in acetic acid to give the tripeptide 7.

It was of interest to ascertain if this method is restricted to the α-aminoisobutyric acid (Aib) synthon 1, or if it can be extended to other 2H-azirin-3-amines. Herein we report the use of the 1-aminocyclopentane-1-carboxylic acid (Acp) synthon 8, the 3-aminotetrahydro-2H-pyran-3-carboxylic acid (Thp) synthon 9, and the α-methylphenylalanine (Phe(2Me)) synthon 10 in peptide synthesis using the ‘azirine/oxazolone method’ under solid-phase conditions. Furthermore, a limitation of the method in the synthesis of poly-Aib sequences is revealed.

Formula collection 1

2. Results and Discussion. – In analogy to the model peptide H–Ala–Aib–Phe–OH, which had been used to establish the viability of the ‘azirine/oxazolone method’ under solid-phase conditions, the tripeptides H–Ala–Acp–Phe–OH (11a) and H–Ala–Thp–Phe–OH (11b) were synthesized on solid-phase in 37% and 38% yield (after prep. HPLC, based on resin loading), respectively (see Scheme 1; instead of 1, the Acp and Thp synthons 8 and 9 were used; Table 1). Both α,α-disubstituted residues were introduced by the ‘azirine/oxazolone method’, and Phe with PyBOP as the coupling reagent.
When \((S)-1-[(S)-2-benzyl-2-methyl-2H-azirin-3-y1]-2-(1-methoxy-1-methylethyl)pyrroloidine (12)\) was used as an optically pure Phe(2Me) synthon, the syntheses of H–Ala–Phe(2Me)–Phe–OH and H–Ala–Phe(2Me)–Leu–OH failed, although this \(2H\)-azirin-3-amine has been used successfully in solution-phase chemistry. \(N\)-Methyl-\(N\)-phenyl-\(2H\)-azirin-3-amines belong to the most reactive \(2H\)-azirin-3-amines. Therefore, the racemic Phe(2Me)-synthon 10 was used in a second, successful attempt to synthesize the tripeptide H–Ala–Phe(2Me)–Leu–OH (13) as a mixture of two diastereoisomers. The diastereoisomers \((S,S,S)-13\) and \((S,R,S)-13\) were separated by means of preparative HPLC, which gave the two isomers in a 1:1 ratio in 49% yield.

X-ray crystallography would have allowed the configuration of the C(\(\alpha\))-center of the Phe(2Me) residue to be determined, but all attempts to crystallize at least one of the two diastereoisomeric tripeptides 13 failed. Therefore, \((S,S,S)-13\) and \((S,R,S)-13\) were derivatized with 4-bromobenzoyl chloride (Scheme 2). Crystals, suitable for an X-ray crystal-structure determination were obtained from \((S,S,S)-14\) (Fig. 1) and the absolute configuration of the molecule was determined independently by the diffraction experiment. This confirmed the \((S)\)-configurations of the alanine and leucine residues and revealed the \((S)\)-configuration of the Phe(2Me) residue. The knowledge of the absolute configuration of \((S,S,S)-14\) allowed the absolute configurations of the primarily isolated tripeptides \((S,S,S)-13\) and \((S,R,S)-13\) to be assigned.
The asymmetric unit in the structure of (S,S,S)-14 contains two symmetry-independent peptide and two MeOH molecules. The two peptide molecules have very similar conformations and differ primarily in the orientation of the plane of the bromophenyl ring. Each peptide molecule is involved in one intramolecular and four intermolecular H-bonds. The amide group closest to the carboxy group in each peptide molecule forms an intramolecular H-bond with the amide O-atom adjacent to the bromophenyl moiety thereby stabilizing a \(\beta \)-turn. Each of these interactions has a graph set motif [18] of S(10). The OH-group in each peptide molecule forms an intermolecular H-bond with the O-atom of a neighbouring MeOH molecule. In turn, each of these MeOH molecules forms an intermolecular H-bond to one of the symmetry-independent peptide molecules. These interactions link the peptide and MeOH molecules alternately into extended chains which run parallel to the [0 1 0] direction in the sequence …peptideA···MeOH2···peptideB···MeOH1···peptideA···. The quaternary graph set motif that describes this sequence is \(C^4_{14}(26) \). The amide group closest to the bromophenyl moiety in peptide molecule A forms an intermolecular H-bond with the carboxylate carbonyl O-atom of a neighbouring molecule B. In turn, molecule B interacts in an identical fashion with another molecule A. These interactions link peptide molecules A and B alternately into extended chains, which run parallel to the [0 -1 1] direction and can be described by a binary graph set motif of \(C^2_{22}(22) \). The central amide group in peptide molecule A forms an
intermolecular H-bond with the carbonyl O-atom of the amide group closest to the carboxylic acid end of a neighbouring molecule A. This interaction links the peptide molecules A into centrosymmetric dimers and can be described by a graph set motif of $R_{2}^{2}(10)$. The peptide molecules B display identical interactions that also link the molecules into centrosymmetric dimers. The combination of all intermolecular H-bonding interactions links the peptide and MeOH molecules into extended two-dimensional networks which lie parallel to the (1 0 0) plane.

Some longer model peptides containing up to three α,α-disubstituted residues were synthesized successfully on solid-phase (Table 1). The pentapeptides H–Val–Thp–Gly–Acp–Ala–OH (15) and H–Ala–Thp–Val–Thp–Phe–OH (16) were obtained in 23% and 16% yield, respectively. All α,α-disubstituted residues were introduced by the ‘azirine/oxazolne method’, while the couplings of the other amino acids were introduced by using PyBOP as the coupling reagent. The 1H-NMR spectrum of 15 showed partial doubling of the signals. The contribution of the minor signals is ca. 20%. Unexpectedly, while increasing the temperature in the NMR experiment, the chemical shifts of the minor and major NH signals did not coalesce or converge. The convergence of the NH signals with increasing temperature would have been strong evidence for the existence of conformers and not diastereoisomers. To rule out the presence of diastereoisomers, however, an amino acid analysis was performed [19]: in order to determine the extent of racemization/epimerization of the C(α) center(s), the pentapeptide was hydrolyzed and the amino acids were analyzed by capillary gas chromatography with enantiomer labelling. The results showed that alanine and valine had racemized by 0.4% and 0.8%, respectively. Thus, the doubling of the signals in
the 1H-NMR was caused by different conformers and not by diastereoisomers. Furthermore, this analysis shows that, although the peptide was synthesized from the N- to the C-terminus, the product was obtained with an acceptably low degree of racemization.

Table 1

The heptapeptides H–Ala–Aib–Val–Acp–Gly–Thp–Leu (17) and H–Ala–Aib–Val–Acp–Phe–Thp–Leu (18) were synthesized analogously on solid-phase with yields of 21% and 13%, respectively. The two peptides only differ in one amino acid (Gly(4) → Phe(4)). While the coupling of the α,α-disubstituted α-amino acid is a difficult step (which has been solved by using 2H-azirin-3-amines), the following coupling can be difficult too, so we assume that this might be the reason for the noticeably lower yield of 18 compared with 17.

Peptides containing α,α-disubstituted α-amino acids stabilize or even promote secondary structures, such as helices or β-turns. Therefore, poly-Aib motifs with an accumulation of helix-stabilizing residues are of some interest. The repeated coupling of 2H-azirin-3-amines in solution is an efficient method for the preparation of this type of sterically highly congested oligopeptides [20] [21]. The tripeptide H–(Aib)$_3$–OH (19) was synthesized using the ‘azirine/oxazolone method’ on solid-phase in 33% yield (Table 2), but the preparation of H–(Aib)$_4$–OH failed. A similar result was obtained in the extension from H–Ala–(Aib)$_2$–OH (20) to H–Ala–(Aib)$_3$–OH (21). While 20 could be prepared in 41% yield, 21 was obtained in a conspicuously lower yield (ca. 12%, not pure; additionally, 35% of
were obtained). The introduction of the fourth amino acid in H–Ala–Aib–Aib–Val–OH with conventional coupling by using PyBOP as the coupling reagent was also in vain. All attempts to improve the introduction of the fourth amino acid, such as performing the reaction in different solvents (CH₂Cl₂, THF, DMF, PhMe, H₂O), raising the temperature to 50° or using a Tentagel resin were not effective. Since the most probable reason for the failure is aggregation, we also performed the reaction by using the ‘magic mixture’ [22] (DCM/DMF/NMP (1:1:1), triton X-100, ethylenecarbonate (2 M)) and in CHCl₃/hexafluoroisopropanol (1:1), but no improvement could be achieved.

| Table 2 |

A slight improvement was observed if proteinogenic α-amino acids were introduced prior to the poly-Aib motif, e.g., H–Ala–Val–Aib–Aib–OH (22) was prepared in 16% yield. Furthermore, the poly-Aib containing peptides H–Ala–Val–Phe–Aib–Aib–Leu–OH (23) and H–Ala–Val–Phe–Aib–Aib–Aib–Leu–OH (24) were synthesized, although in low yield (6% and 9%, respectively). All Aib residues were introduced by the ‘azirine/oxazolone method’, while all other amino acids were introduced by using PyBOP as the coupling reagent.

3. Conclusions. – Peptide synthesis using the ‘azirine/oxazolone method’ on solid-phase was carried out from the N- to the C-terminus. 2H-Azirin-3-aminos were used to introduce α,α-disubstituted α-amino acids into the peptides without the need for further reagents. It was shown that the method is not limited to the
Aib synthon 1, and it was extended successfully to the 1-aminocyclopentane-1-carboxylic acid (Acp) synthon 8, the 3-aminotetrahydro-2H-pyran-3-carboxylic acid (Thp) synthon 9 and the α-methylphenylalanine (Phe(2Me)) synthon 10. Peptides with up to seven residues, of which three are α,α-disubstituted α-amino acids, have been prepared. In contrast, the synthesis of peptides containing the poly-Aib motif was not successful, most probably due to aggregation.

We thank Dr. Daniel Obrecht, Polyphor Ltd, Allschwil (Switzerland) for continuous advice and valuable discussions, as well as the analytical sections of our institute for 2D-NMR measurements and mass spectra. Financial support of the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel is gratefully acknowledged.
EXPERIMENTAL PART

1. General. See [16], except analytic HPLC-MS: The system consists of a Rheos 2000 pump, a Rheos CPS-LC degasser (Flux Instruments, Basel, Switzerland) and a Thermo Finnigan Surveyor photo-diode array detector (Thermo Finnigan, San Jose, CA, USA). The HPLC-system is equipped with a HTS PAL autosampler (CTC Analytics, Zwingen, Switzerland) and connected to a Thermo Finnigan MSQ linear quadrupole instrument. Method A: Interchim Uptisphere C18-NEC, 120 Å, 3 µm, 50 × 2.0 mm column (Interchim, Montluçon, France); eluents: A = H2O, B = MeCN, C = HCOOH (1%) in H2O; flow rate: 0.2 ml/min, gradient (A:B:C): 0.0–10.0 min: 85:5:10–75:15:10. Method B: Interchim Uptisphere C18-ODB, 120 Å, 3 µm, 50 × 2.0 mm column; eluents: A = H2O, B = MeCN, C = HCOOH (1%) in H2O; flow rate: 0.2 ml/min, gradient (A:B:C): 0.0–15.0 min: 87:3:10–40:50:10. N,N,N-methyl-2,2-trimethyl-N-phenyl-2H-azirin-3-amine (1), N-methyl-N-phenyl-1-azaspiro[2.4]hept-1-en-2-amine (8), N-methyl-N-phenyl-6-oxa-1-azaspiro[2.5]oct-1-en-2-amine (9), and 2-benzyl-N,2-dimethyl-N-phenyl-2H-azirin-3-amine (10) were synthesized by Villalgordo and Heimgartner’s method [23–25]. (S)-1-[(S)-2-benzy1-2-methyl-2H-azirin-3-y1]-2-(1-methoxy-1-methylethyl)pyrrolidine (12) was synthesized according to [26]. In the NMR data, the integer n in Xaa_n corresponds to the position of the amino acid within the peptide, but is only given if the amino acid was present more than once in the peptide and if the NMR signal could be assigned unambiguously. In some ¹H-NMR spectra, the broad COOH signal could not be detected. In the ¹H- and ¹³C-NMR
spectra of 15, the descriptor (w) means the weaker, (s) the stronger signal of the two conformers observed.

2. Abbreviations. Aib: \(\alpha \)-aminoisobutyric acid; CC: column chromatography; Acp: 1-aminocyclopentane-1-carboxylic acid; DCM: dichloromethane; DIPEA: \(N,N \)-diisopropylethylamine; HOBt: 1-hydroxybenzotriazole; PAM: [4-(hydroxymethyl)phenyl]acetamidomethyl; Phe(2Me): 2-amino-2-methyl-3-phenylpropanoic acid; PyBOP: (1H-benzotriazol-1-yloxy)tripyrrrolidinophosphonium hexafluorophosphate; Thp: 3-aminotetrahydro-2H-pyran-3-carboxylic acid; TIPS: triisopropylsilane.

3. General Procedures (GP1–GP6). GP1: Attachment of the First Amino Acid. All manipulations were carried out under \(\text{N}_2 \). PAM resin was swollen in THF. After filtration, a soln. of \(\text{COCl}_2 \) in toluene (1.9 M, 10 equiv.) and THF (ca. 2.5 ml/1 g resin) were added to the resin, which was agitated at r.t. for 2 h, then washed with THF (2×) and DCM (2×). In a separate vial, H–Xaa–OrBu · HCl (4 equiv.) was dissolved in DIPEA (8 equiv.) and DCM (conc. of H–Xaa–OrBu · HCl = 0.2 M). This mixture was added to the resin, and any ammonium salt that occurred was removed by filtration. The resin was agitated at r.t. overnight, then washed with DMF (3×) and DCM (3×).

GP2: Removing the tBu Protecting Group. The resin was swollen in DCM. TFA in DCM (1×5 s, 25%; 1×30 min, 50%) and TIPS (5%, in each case) were added and the resin agitated at r.t. Afterwards, the resin was washed with DCM (3×), DMF (2×) and DCM (3×).

GP3: Coupling with \(2H \)-azirin-3-amines 1, 8, 9, 10. The resin was swollen in DCM. A soln. of \(2H \)-azirin-3-amine (4 equiv.) in DCM (conc. of \(2H \)-azirin-3-
amine = 0.2 M) was added and the resin agitated at r.t. overnight, then washed with DCM (3×). Unconsumed 2H-azirin-3-amine can easily be recovered.

GP4: Hydrolysis of the Terminal Amide. The resin was swollen in THF. Aq. HCl (ca. 3-4 ml/200 mg resin, 3 M in THF/H₂O, prepared from conc. HCl and THF) was added and the resin agitated at r.t. overnight, then washed with THF (3×), DMF (3×) and DCM (3×).

GP5: Coupling with H–Xaa–OtBu · HCl. The resin was swollen in DMF. HOBt (6 equiv.) in DMF, PyBOP (4 equiv.) in DMF, H–Xaa–OtBu · HCl (4 equiv.) in DMF and DIPEA (12 equiv.) was added (conc. of H–Xaa–OtBu · HCl = 0.2 M), and the resin agitated at r.t. overnight, then washed with DMF (3×) and DCM (3×).

GP6: Cleavage. The resin was swollen in DCM. HBr in AcOH (33%, 1 ml/100 mg resin), two drops of H₂O were added and the resin agitated for 6 h. The resin was separated by filtration and washed with AcOH/DCM (1:1, 3×) and MeCN/DCM (1:1, 3×). The solvents were evaporated under reduced pressure and the crude product was purified by means of HPLC. The purified product was lyophilized.

4. **Synthesis of Peptides.** 2(\text{S})\{((\text{2S})\text{-Amino-1-oxopropyl}amino)\text{cyclopentyl}\text{carbonyl}amino\}-3\text{-phenylpropanoic Acid (H–Ala–Acp–Phe–OH; \textbf{11a})}. PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5 and 6 to yield \textbf{11a} (21.0 mg, 37%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method B): $t_R = 7.7$ min, $m/z = 348$ (100, $[M + H]^+$), 183 (76, $[M – \text{Phe}]^+$), 155 (20, $[M – \text{Phe} – \text{CO}]^+$). IR (KBr): 3397\text{m}, 3262s, 3076s, 2962m, 2876m, 1731s, 1664\text{sh}, 1647\text{vs}, 1561m,
1517s, 1490m, 1455m, 1442m, 1382w, 1331w, 1266m, 1238m, 1202vs, 1141s, 1004w, 982w, 845w, 802w, 734w, 724w, 699w. 1H-NMR ((D$_6$)DMSO, 600 MHz): 12.84 (br. s, COOH); 8.53, 8.48 (2s, NH(Acp)); 8.06 (br. s, NH$_3$(Ala)); 7.36 (d, $J = 7.7$, NH(Phe)); 7.27–7.17 (m, 5 arom. H); 4.44 (dd, $J = 7.7$, 7.7, 5.6, CH(α)(Phe)); 3.82 (br. s, CH(α)(Ala)); 3.07 (dd, 2 $J = 13.8$, J = 5.6, 1 H of CH$_2$(Phe)); 2.94 (dd, $^2J = 13.8$, J = 7.7, 1 H of CH$_2$(Phe)); 2.14–2.09 (m, 1 H of 4 CH$_2$(Acp)); 1.89–1.82 (m, 3 H of 4 CH$_2$(Acp)); 1.60–1.59 (m, 4 H of 4 CH$_2$(Acp)); 1.33 (d, $J = 7.0$, Me(Ala)). 13C-NMR ((D$_6$)DMSO, 150 MHz): 172.7 (s, CO(Phe)); 172.2 (s, CO(Acp)); 169.3 (s, CO(Ala)); 137.4 (s, arom. C); 129.3, 128.1, 126.4 (3d, 5 arom. CH); 66.4 (s, C(α)(Acp)); 53.4 (d, CH(α)(Phe)); 48.3 (d, CH(α)(Ala)); 36.9 (t, CH$_2$(Phe)); 36.3, 35.3, 23.7 (3t, 4 CH$_2$(Acp)); 16.9 (q, Me(Ala)). ESI-MS: 370 (8, [M + Na]$^+$), 348 (100, [M + H]$^+$), 183 (13, [M – Phe]$^+$), 151 (24).

2(S)–[(4–[(2(S)–Amino–1-oxopropyl)amino]tetrahydro-2H-pyran-4-yl]carbonyl]amino]–3-phenylpropanoic Acid (H–Ala–Thp–Phe–OH; 11b). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5 and 6 to yield 11b (22.5 mg, 38%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method B): $t_R = 6.1$ min, m/z = 364 (100, [M + H]$^+$), 199 (58, [M – Phe]$^+$). IR (KBr): 3425s, 3243s, 3061vs, 3033vs, 2875s, 2616w, 1724vs, 1678vs, 1533vs, 1499s, 1455m, 1444m, 1429m, 1394m, 1356m, 1331w, 1302m, 1261s, 1244s, 1202vs, 1141s, 1102s, 1029w, 1019w, 969w, 843w, 800w, 723m, 701m. 1H-NMR ((D$_6$)DMSO, 600 MHz): 12.79 (br. s, COOH); 8.43 (s, NH(Thp)); 8.06 (br. s, NH$_3$(Ala)); 7.52 (d, $J = 8.0$, NH(Phe)); 7.28–7.51 (m, 5 arom. H); 4.46 (dd, $J = 8.3$, 8.0, 5.4, CH(α)(Phe)); 3.95 (q, $J = 6.7$, CH(α)(Ala));
3.68–3.65, 3.59–3.59, 3.52–3.46 (3m, 2 CH₂O(Thp)); 3.08 (dd, 2J = 13.8, J = 5.4, 1 H of CH₂(Phe)); 2.95 (dd, 2J = 13.8, J = 8.3, 1 H of CH₂(Phe)); 1.99–1.94, 1.87–1.76 (2m, 2 CH₂CH₂O(Thp)); 1.38 (d, J = 7.0, Me(Ala)). ¹³C-NMR ((D₆)DMSO, 150 MHz): 172.6 (s, CO(Phe)); 171.9 (s, CO(Thp)); 169.5 (s, CO(Ala)); 137.4 (s, arom. C); 129.3, 128.1, 126.4 (3d, 5 arom. CH); 62.6, 62.3 (2t, 2 CH₂O(Thp)); 57.0 (s, C(α)(Thp)); 53.3 (d, CH(α)(Phe)); 48.4 (d, CH(α)(Ala)); 36.9 (t, CH₂(Phe)); 31.9, 31.3 (2t, 2 CH₂CH₂O(Thp)); 17.1 (q, Me(Ala)). ESI-MS: 364 (100, [M + H]⁺).

2(S)-(2(S)-(2(S)-Amino-1-oxopropyl)amino]-2-benzyl-1-oxopropyl)amino)-4-methylpentanoic Acid and 2(S)-(2(R)-(2(S)-Amino-1-oxopropyl)amino]-2-benzyl-1-oxopropyl)amino)-4-methylpentanoic Acid (H–Ala–Phe(2Me)–Leu–OH; (S,S,S)-13 and (S,R,S)-13). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5 and 6 to yield (S,S,S)-13 and (S,R,S)-13 in a 1:1 ratio as colorless powders after prep. HPLC purification and lyophilization (29 mg, 49% altogether). Data of (S,S,S)-13. HPLC-MS (method B): tᵣ = 8.8 min, m/z = 364 (100, [M + H]⁺). IR (KBr): 3045sh, 3281s, 3066s, 3033s, 2960s, 2874s, 2623w, 1672vs, 1528vs, 1454m, 1388m, 1329w, 1268m, 1238m, 1202vs, 1141vs, 1031w, 1004w, 969w, 928w, 879w, 838w, 800w, 740w, 722m, 706m. ¹H-NMR ((D₆)DMSO, 600 MHz): ca. 9.5–8.0 (br. s, NH₃(Ala)); 8.09 (s, NH(Phe(2Me))); 7.82 (d, J = 8.2, NH(Leu)); 7.27–7.21, 7.12–7.11 (2m, 5 arom. H); 4.36–4.32 (m, CH(α)(Leu)); 3.81–3.80 (m, CH(α)(Ala)); 3.36, 3.18 (AB, J = 13.5, PhCH₂); 1.68–1.59 (m, CH(γ)(Leu), 1 H of CH₂(Leu)); 1.52–1.41 (m, 1 H of CH₂(Leu)); 1.31 (s, Me(Phe(2Me))); 1.30 (d, J = 7.0, Me(Ala)); 0.88, 0.86 (2d, J = 6.5, 2 Me(Leu)). ¹³C-NMR ((D₆)DMSO, 150 MHz): 174.3 (s, CO(Leu)); 172.5 (s,
CO(Phe(2Me)); 169.4 (s, CO(Ala)); 136.8 (s, arom. C); 130.6, 127.8, 126.4 (3d, 5 arom. CH); 59.6 (s, C(α)(Phe(2Me))); 50.5 (d, CH(α)(Leu)); 48.8 (d, CH(α)(Ala)); 40.1 (t, CH2(Leu)); 38.8 (t, PhCH2); 24.0 (d, CH(γ)(Leu)); 23.7 (q, Me(Phe(2Me))); 23.0, 21.4 (2q, 2 Me(Leu)); 17.1 (q, Me(Ala)). ESI-MS: 408 (12, [M – H + 2 Na]⁺), 386 (100, [M + Na]⁺), 364 (11, [M + H]⁺), 293 (7, [M – Ala + H]⁺), 233 (8, [M – Leu]⁺), 205 (23, [M – Leu – CO]⁺), 134 (28).

Data of (S,R,S)-13. HPLC-MS (method B): tR = 9.7 min, m/z = 364 (100, [M + H]⁺). IR (KBr): 3291 s, 3066 s, 3034 s, 2961 s, 2875 s, 2618 w, 1720 s, 1670 vs, 1525 vs, 1468 m, 1454 m, 1387 m, 1329 w, 1269 m, 1202 vs, 1143 vs, 1031 w, 1004 w, 968 w, 927 w, 838 w, 800 w, 742 w, 723 m, 703 m. ¹H-NMR ((D₆)DMSO, 600 MHz): 8.11 (s, NH₃(Ala)); 8.02 (s, NH(Phe(2Me))); 8.00 (d, J = 7.9, NH(Leu)); 7.25–7.19, 7.10–7.09 (2m, 5 arom. H); 4.29–4.25 (m, CH(α)(Leu)); 3.93–3.91 (m, CH(α)(Ala)); 3.34 (s, PhCH₂); 1.71–1.65 (m, CH(γ)(Leu), 1 H of CH₂(Leu)); 1.55–1.52 (m, 1 H of CH₂(Leu)); 1.45 (s, Me(Phe(2Me))); 1.24 (d, J = 6.9, Me(Ala)); 0.92, 0.88 (2d, J = 6.4, 2 Me(Leu)). ¹³C-NMR ((D₆)DMSO, 150 MHz): 173.9 (s, CO(Leu)); 172.5 (s, CO(Phe(2Me))); 168.8 (s, CO(Ala)); 136.7 (s, arom. C); 130.1, 127.8, 126.4 (3d, 5 arom. CH); 60.2 (s, C(α)(Phe(2Me))); 50.8 (d, CH(α)(Leu)); 48.4 (d, CH(α)(Ala)); 39.8 (t, CH₂(Leu)); 39.7 (t, PhCH₂); 24.3 (d, CH(γ)(Leu)); 23.0 (q, Me(Phe(2Me))); 23.0, 21.1 (2q, 2 Me(Leu)); 17.2 (q, Me(Ala)). ESI-MS: 408 (5, [M – H + 2 Na]⁺), 386 (100, [M + Na]⁺), 364 (96, [M + H]⁺), 293 (23, [M – Ala + H]⁺), 233 (24, [M – Leu]⁺), 205 (43, [M – Leu – CO]⁺), 134 (63).

2(S)-[[(2-[[4-[(2(S)-Amino-3-methyl-1-oxobuty)amino]tetrahydro-2H-pyran-4-yl]carbonyl)amino]-1-
oxoethyl]amino)cyclopentyl]carbonyl]amino)propanoic Acid (H–Val–Thp–Gly–Acp–Ala–OH; 15). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5, 2, 3, 4, 5 and 6 to yield 15 (17.0 mg, 23%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC -MS (method B): $t_R = 4.9$ min, $m/z = 484$ (100, [M + H]$^+$). IR (KBr): 3337s, 3056s, 2971s, 2880m, 2642w, 1720sh, 1670vs, 1534vs, 1455m, 1430w, 1400w, 1379w, 1333w, 1297m, 1240m, 1202vs, 1141s, 1103m, 1027w, 961w, 935w, 840w, 800w, 722m. 1H-NMR ((D$_6$)DMSO, 600 MHz) (2 conformers): ca. 13.0–12.0 (br. s, COOH); 8.82 (s, NH(Thp)); 8.57 (w) (s, NH(Acp)); 8.11 (s, NH$_3$(Val)); 8.04 (s, NH(Gly)); 7.73 (s) (s, NH(Acp)); 7.53 (w), 7.38 (s) (2d, $J = 7.3$, NH(Ala)); 4.26 (w), 4.14 (s) (2dq, $J = 7.3$, 7.3, CH(β)(Ala)); 3.77–3.71, 3.66–3.53, 3.47–3.43 (3m, CH(α)(Val), CH$_2$(Gly), 2 CH$_2$(Thp)); 2.23–2.18, 2.14–2.07 (2m, CH(β)(Val), 1 H of 2 CH$_2$O(Thp), 1 H of 2 CH$_2$C(α)(Acp)); 1.97–1.76 (m, 3 H of 2 CH$_2$O(Thp), 3 H of 2 CH$_2$C(α)(Acp)); 1.69–1.56 (m, 2 CH$_2$C(α)(Acp)); 1.27 (s), 1.24 (w) (2d, $J = 7.3$, Me(Ala)); 0.99 (s), 0.95 (s), 0.94 (w, w) (3d, $J = 6.9$, Me(Val)). 13C-NMR ((D$_6$)DMSO, 150 MHz) (2 conformers): 173.9 (s, CO(Ala)); 173.3 (s, CO(Thp)); 173.2 (s, CO(Acp)); 168.7 (s, CO(Gly)); 168.5 (s, CO(Val)); 66.4 (w), 65.9 (s) (2s, C(α)(Acp)); 62.5, 62.4 (2t, 2 CH$_2$O(Thp)); 57.6 (s), 57.6 (w) (2d, CH(α)(Val)); 56.9 (s, C(α)(Thp)); 47.7 (s), 47.6 (w) (2d, CH(α)(Ala)); 43.2 (t, CH$_2$(Gly)); 37.1, 35.2 (2t, 2 CH$_2$C(α)(Acp)); 32.8, 30.1 (2t, 2 CH$_2$O(Thp)); 29.6 (s), 29.5 (w) (2d, CH(β)(Val)); 24.1 (s), 24.0 (s), 23.9 (w), 23.8 (w) (4t, 2 CH$_2$C(α)(Acp)); 18.6 (s), 18.2 (w), 17.5 (w), 17.2 (s) (4q, 2 Me(Val)); 17.1 (w), 17.0 (s) (2q, Me(Ala)). ESI-MS: 484 (100, [M + H]$^+$), 300 (20).
2(S)-[(4-(2(S)-[(4-(2(S)-Amino-1-oxopropyl)amino]tetrahydro-2H-pyran-4-
yl]carbonyl)amino]-3-methyl-1-oxobutyl]amino]tetrahydro-2H-pyran-4-
yl]amino]-3-phenylpropanoic Acid (H-Ala–Thp–Val–Thp–Phe–OH; 16). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5, 2, 3, 4, 5 and 6 to yield 16 (14.3 mg, 16%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method B): \(t_R = 8.3 \text{ min} \), \(m/z = 590 \) (100, \([M + H]^+\)), 425 (98, \([M – \text{Phe}]^+\)), 298 (48, \([M – (\text{Thp–Phe})]^+\)). IR (KBr): 3426s, 3306s, 3061s, 2967s, 2875m, 2620w, 1720s, 1671v, 1533v, 1469m, 1444m, 1429m, 1393m, 1356w, 1302m, 1259m, 1245m, 1203v, 1189sh, 1142s, 1104s, 1029w, 968w, 946w, 917w, 838w, 800w, 722m, 702w. \(^1\)H-NMR ((D₆)DMSO, 600 MHz): ca. 13.0–12.5 (br. s, COOH); 8.52 (s, NH(Thp¹)); 8.07 (s, NH₃(Ala)); 8.03 (s, NH(Thp²)); 7.45 (d, \(J = 7.9 \), NH(Phe)); 7.38 (d, \(J = 7.7 \), NH(Val)); 7.27–7.16 (m, 5 arom. H)); 4.43 (ddd, \(J = 7.9, 7.9, 5.9 \), CH(α)(Phe)); 4.17 (dd, \(J = 7.3, 7.3 \), CH(α)(Val)); 3.99–3.97 (m, CH(α)(Ala)); 3.71–3.41 (m, 4 CH₂O(Thp)); 3.02 (dd, \(J = 13.8, 5.9 \), 1 H of CH₂(Phe)); 2.95 (dd, \(J = 13.8, J = 7.5, 1 \) H of CH₂(Phe)); 2.07–2.04 (m, CH(β)(Val)); 2.01–1.84 (m, 4 CH₂CH₂O(Thp)); 1.39 (d, \(J = 7.0 \), Me(Ala)); 0.87, 0.82 (2d, \(J = 6.7, 2 \) Me(Val)). \(^{13}\)C-NMR ((D₆)DMSO, 150 MHz): 172.5 (s, 2 CO(Thp)); 172.4 (s, CO(Phe)); 171.1 (s, CO(Val)); 169.7 (s, CO(Ala)); 137.2 (s, arom. C); 129.1, 128.1, 126.3 (3d, 5 arom. CH); 62.4, 62.3, 62.3 (3t, 4 CH₂O(Thp)); 58.4 (d, CH(α)(Val)); 57.1, 56.9 (2s, 2 C(α)(Thp)); 53.3 (d, CH(α)(Phe)); 48.5 (d, CH(α)(Ala)); 36.9 (t, CH₂(Phe)); 31.9, 31.7, 31.3, 31.1 (4t, 4 CH₂CH₂O(Thp)); 30.0 (d, CH(β)(Val)); 19.5, 18.2 (2q, 2 Me(Val)); 17.1 (q, Me(Ala)). ESI-MS: 590 (100, \([M + H]^+\)), 425 (27, \([M – \text{Phe}]^+\)).
PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5, 2, 3, 4, 5 and 6 to yield 17 (20.2 mg, 21%) as a colorless powder after prep. HPLC purification and lyophilization. For the ‘conventional’ coupling of Gly and Leu, the coupling was performed two times (1 × 2 h and 1 × overnight). HPLC-MS (method B): $t_R = 11.9$ min, $m/z = 682$ (100, $[M + H]^+$). IR (KBr): 3314 s, 3054 m, 2962 s, 2874 m, 1722 sh, 1662 vs, 1536 vs, 1470 m, 1448 m, 1389 m, 1368 w, 1295 w, 1295 w, 1250 sh, 1202 s, 1172 m, 1104 w, 1062 w, 977 w, 947 w, 925 w, 851 w, 835 w, 800 w, 722 w. 1H-NMR ((D$_6$)DMSO, 600 MHz): ca. 12.6–12.1 (br. s, COOH); 8.69 (s, NH(Aib)); 8.49 (s, NH(Acp)); 8.23 (br. s, NH$_3$(Ala)); 8.10 (t, $J = 5.6$, NH(Gly)); 7.90 (d, $J = 6.1$, NH(Val)); 7.47 (s, NH(Thp)); 7.42 (d, $J = 8.1$, NH(Leu)); 4.23–4.19 (m, CH(α)(Leu)); 3.90–3.88 (m, CH(α)(Ala)); 3.79 (m, CH(α)(Val)); 3.68–3.64 (m, 3 H of 2 CH$_2$O(Thp)); 3.60 (d, $J = 5.6$, CH$_2$(Gly)); 3.57–3.45 (m, 1 H of 2 CH$_2$O(Thp)); 2.30–2.28 (m, 1 H of 2 CH$_2$CH$_2$C(α)(Acp)); 2.19–2.16 (m, CH(β)(Val)); 2.09–2.02 (m, 2 H of 2 CH$_2$CH$_2$O(Thp)); 2.00–1.88 (m, 1 H of 2 CH$_2$CH$_2$O(Thp), 3 H of 2 CH$_2$CH$_2$C(α)(Acp)); 1.84–1.80 (m, 1 H of 2 CH$_2$CH$_2$O(Thp)); 1.72–1.60 (m, CH(γ)(Leu), 1 H of CH$_2$(Leu), 4 H of 2 CH$_2$CH$_2$C(α)(Acp)); 1.49–1.46 (m, 1 H of CH$_2$(Leu)); 1.44, 1.40 (2s, 2 Me(Aib)); 1.37 (d, $J = 6.9$, Me(Ala)); 0.88, 0.87 (2d, $J = 6.7$, 2 Me(Val)); 0.86, 0.82 (2d, $J = 6.4$, 2 Me(Leu)). 13C-NMR ((D$_6$)DMSO, 150 MHz): 175.0 (s, CO(Acp)); 174.7 (s, CO(Aib)); 173.8 (s, CO(Leu)); 173.1 (s, CO(Thp)); 172.4 (s, CO(Val)); 169.5 (s,
CO(Ala)); 168.9 (s, CO(Gly)); 66.1 (s, C(\alpha)(Acp)); 62.4, 62.3 (2t, 2 CH2O(Thp)); 60.1 (d, CH(\alpha)(Val)); 57.1 (s, C(\alpha)(Thp)); 56.4 (s, C(\alpha)(Aib)); 50.3 (d, CH(\alpha)(Leu)); 48.5 (d, CH(\alpha)(Ala)); 44.1 (t, CH2(Gly)); 39.8 (d, CH(\alpha)(Aib)); 32.7, 30.3 (2t, 2 CH2CH2(\alpha)(Acp)); 32.7, 30.3 (2t, 2 CH2CH2O(Thp)); 28.3 (d, CH(\beta)(Val)); 25.4, 24.5 (2q, 2 Me(Aib)); 24.1, 24.1, 24.0 (d, d, CH(\alpha)(Val)); 23.0, 21.3 (2q, 2 Me(Leu)); 19.4, 19.3 (2q, 2 Me(Val)); 16.7 (q, Me(Ala)).

ESI-MS: 682 (100, [M + H]+).

2(S)-\{4-[4\{2(S)-(\{4\{2(S)-Amino-1-oxopropyl]amino\}-2-methyl-1-oxopropyl]amino\}-3-methyl-1-oxobutyl]amino\}cyclopentyl]carbonyl]amino\}-3-phenyl-1-oxopropyl]amino]tetrahydro-2H-pyran-4-yl[carbonyl]amino\}-4-methylpentanoic Acid (H–Ala–Aib–Val–Acp–Phe–Thp–Leu–OH; 18). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 5, 2, 3, 4, 5, 2, 3, 4, 5 and 6 to yield 18 (14.2 mg, 13%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method B): \(t_R = 11.4\ min, \: m/z = 772 (100, [M + H]^+)\). IR (KBr): 3431s, 3319s, 3062m, 3032m, 2962s, 2874m, 1726sh, 1662vs, 1532vs, 1469m, 1454m, 1445m, 1389w, 1367w, 1326w, 1293sh, 1266m, 1244m, 1202s, 1140s, 1108w, 1029w, 978w, 927w, 838w, 800w, 722w, 700w. \(^1\)H-NMR ((D_6)DMSO, 600 MHz): ca. 12.8–12.2 (br. s, COOH); 8.78 (br. s, NH(Aib)); 8.15 (br. s, NH\(_3\)(Ala)); 8.04 (br. s, NH(Val), NH(Acp)); 7.72 (br. s, NH(Phe)); 7.61 (s, NH(Thp)); 7.26–7.24 (m, 2 arom. CH); 7.21–7.17 (m, NH(Leu), 3 arom. CH); 4.34–4.30 (m, CH(\alpha)(Leu)); 4.23 (br. s, CH(\alpha)(Phe)); 3.87 (br. s, CH(\alpha)(Ala)); 3.83–3.81 (m, CH(\alpha)(Val)); 3.68–3.65 (m, 3 H of 2 CH2O(Thp)); 3.34–3.31 (m, 1 H of CH\(_2\)(Phe)); 3.26–3.22 (m, 1 H of 2 CH2O(Thp)); 2.92–2.87 (m, 1 H of CH\(_2\)(Phe)); 2.16–2.15 (m, 2 H of 2
$\text{CH}_2\text{CH}_2\text{O(Thp)}$); 2.08–2.04 ($m$, CH($\beta$)(Val), 1 H of 4 CH$_2$(Acp)); 1.99–1.94 ($m$, 1 H of 2 CH$_2CH_2$O(Thp), 1 H of 4 CH$_2$(Acp)); 1.79–1.71 ($m$, CH($\gamma$)(Leu), 1 H of 2 CH$_2CH_2$O(Thp), 2 H of 4 CH$_2$(Acp)); 1.69–1.58 ($m$, 1 H of CH$_2$(Leu), 4 H of 4 CH$_2$(Acp)); 1.49–1.44 ($m$, 1 H of CH$_2$(Leu)); 1.49 ($s$, 1 Me of 2 Me(Aib)); 1.37 (d, $J = 6.9$, Me(Ala)); 1.36 (s, 1 Me of 2 Me(Aib)); 0.91 (d, $J = 6.8$, 1 Me of 2 Me(Val)); 0.88 (d, $J = 6.7$, 1 Me of 2 Me(Leu)); 0.85 (d, $J = 6.7$, 1 Me of 2 Me(Val), 1 Me of 2 Me(Leu)). 13C-NMR ((D_6)DMSO, 150 MHz): 175.9 (s, CO(Aib)); 174.2 (s, CO(Acp)); 173.9 (s, CO(Leu)); 172.9 (s, CO(Thp)); 172.6 (s, CO(Val)); 170.3 (s, CO(Phe)); 169.4 (s, CO(Ala)); 138.4 (s, arom. C); 129.0, 128.2, 126.1 ($3d$, 5 arom. CH); 66.3 (s, C(α)(Acp)); 62.5, 62.3 ($2t$, 2 CH$_2$O(Thp)); 60.8 (d, CH(α)(Val)); 57.1 (s, C(α)(Thp)); 56.2 (s, C(α)(Aib)); 54.9 (d, CH(α)(Phe)); 49.8 (d, CH(α)(Leu)); 48.4 (d, CH(α)(Ala)); 40.2 (t, CH$_2$(Leu)); 36.1, 36.0 ($2t$, 2 CH$_2$CH$_2$C(α)(Acp)); 35.5 (t, CH$_2$(Phe)); 33.7, 28.7 ($2t$, 2 CH$_2$CH$_2$O(Thp)); 28.5 (d, CH(β)(Val)); 25.3, 24.3 ($2q$, 2 Me(Aib)); 24.1, 24.0 ($2t$, 2 CH$_2$CH$_2$C(α)(Acp)); 23.7 (d, CH(γ)(Leu)); 23.1, 21.1 ($2q$, 2 Me(Leu)); 19.3, 18.4 ($2q$, 2 Me(Val)); 16.7 (q, Me(Ala)). ESI-MS: 772 (100, [M + H]$^+$).

2-((2-Amino-2-methyl-1-oxopropyl)amino)-2-methylpropanoic Acid (H–Aib–Aib–Aib–OH; 19). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 3 and 6 to yield 19 (15.9 mg, 33%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method A): $t_R = 1.3$ min, $m/z = 274$ (100, [M + H]$^+$). IR (KBr): 3508m, 3359s, 3262m, 3119s, 3064s, 2994s, 2947s, 2604w, 1719vs, 1667vs, 1519vs, 1472m, 1440m, 1406w, 1390w, 1367w, 1258s, 1203vs, 1179vs, 1144vs, 947w, 925w, 911w, 839w, 801w, 773w, 723m. 1H-NMR ((D_6)DMSO, 300 MHz):
ca. 9.0–7.0 (br. s, NH₃); 8.00, 7.38 (2s, 2 NH); 1.49, 1.41, 1.38 (3s, 6 Me). ¹³C-NMR ((D₆)DMSO, 75 MHz): 175.8, 172.6, 170.7 (3s, 3 CO); 56.6, 56.5, 55.2 (3s, 3 C(α)); 24.5, 24.4, 23.3 (3q, 6 Me). ESI-MS: 274 (100, [M + H]+), 170 (4, [M – Aib]+).

2-([(2(S)-Amino-1-oxopropyl)amino]-2-methyl-1-oxopropyl)amino]-2-methylpropanoic Acid (H–Ala–Aib–Aib–OH; 20). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 3 and 6 to yield 20 (19.0 mg, 41%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method A): tᵣ = 1.3 min, m/z = 260 (100, [M + H]+). IR (KBr): 3284s, 3072s, 2993s, 2945s, 2631w, 1726vs, 1673vs, 1530vs, 1471m, 1458m, 1441m, 1389m, 1368m, 1264s, 1204vs, 1141vs, 1005w, 930w, 880w, 838m, 801m, 768w, 723m. ¹H-NMR ((D₆)DMSO, 600 MHz): ca. 8.8–7.5 (br. s, NH₃(Ala)); 8.38 (s, NH(Aib³)); 7.46 (s, NH(Aib³)); 3.85 (q, J = 6.9, CH(α)(Ala)); 1.41–1.34 (m, 4 Me(Aib), Me(Ala)). ¹³C-NMR ((D₆)DMSO, 150 MHz): 175.7 (s, CO(Aib³)); 172.5 (s, CO(Aib³)); 168.9 (s, CO(Ala)); 56.3 (s, C(α)(Aib³)); 55.2 (s, C(α)(Aib³)); 48.3 (d, CH(α)(Ala)); 24.8, 24.5, 24.5, 24.4 (4q, 4 Me(Aib)); 17.1 (q, Me(Ala)). ESI-MS: 519 (36, [2M + H]+), 260 (100, [M + H]+).

2-[(2-[(2(S)-Amino-1-oxopropyl)amino]-2-methyl-1-oxopropyl)amino]-2-methyl-1-oxopropyl)amino]-2-methylpropanoic Acid (H–Ala–Aib–Aib–Aib–OH; 21). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 3, 4, 3, 4, 3 and 6 to yield 21 (7 mg, 12%) as a colorless powder after prep. HPLC purification and lyophilization. Additional 20 was isolated as a colorless powder (16 mg, 35%). HPLC-MS (method A): tᵣ = 1.5 min, m/z = 345 (100, [M + H]+). IR(KBr): 3432vs, 3262vs, 3120vs, 2992vs, 2939s, 1670vs, 1543vs, 1535vs,
1469s, 1460s, 1399vs, 1367m, 1261m, 1204vs, 1182s, 1141s, 1089w, 1048w, 1025w, 1005w, 722w. ¹H-NMR ((D₆)DMSO, 600 MHz): ca. 12.2–11.8 (br. s, COOH); 8.61 (s, NH(Aib)); 8.04 (br. s, NH₃(Ala)); 7.44, 7.31 (2s, 2 NH(Aib)); 3.87 (br. s, CH(α)(Ala)); 1.39–1.34 (m, 6 Me(Aib), Me(Ala)). ¹³C-NMR ((D₆)DMSO, 150 MHz): 174.4, 172.2, 171.1, 168.1 (4s, 4 CO); 55.2, 54.6, 53.8 (3s, 3 C(α)(Aib)); 47.1 (d, CH(α)(Ala)); 23.9, 23.6, 23.5, 23.3, 23.2 (6q, 6 Me(Aib)); 15.8 (q, Me(Ala)). ESI-MS: 345 (100, [M + H]⁺).

2-[(2-[(2-[(2-(2-(2-[(2(S)-Amino-1-oxopropyl)amino]-3-methyl-1-oxobutyl)amino)-2-methyl-1-oxopropyl)amino]-2-methyl-1-oxopropyl)amino]-3-methyl-1-oxobuty]amino)-2-methyl-1-oxopropyl]amino]-2-methylpropanoic Acid (H-Ala–Val–Aib–Aib–Aib–OH; 22). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 5, 2, 3, 4, 3, 4, 3 and 6 to yield 22 (11.0 mg, 16%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method A): tᵣ = 8.4 min, m/z = 444 (100, [M + H]⁺).

IR (KBr): 3431s, 3304s, 3063s, 2987s, 2942s, 2883m, 2629w, 1720sh, 1667vs, 1534vs, 1469m, 1389m, 1366m, 1203vs, 1181vs, 1140s, 1010w, 935w, 837w, 800w, 776w, 722m. ¹H-NMR ((D₆)DMSO, 600 MHz): ca. 9.5–7.5 (br. s, NH₃(Ala)); 8.40 (s, NH(Aib³)); 8.33 (d, J = 7.6, NH(Val)); 7.34 (s, NH(Aib⁵)); 7.13 (s, NH(Aib⁴)); 4.11 (dd, J = 7.2, 7.2, CH(α)(Val)); 3.95 (q, J = 6.9, CH(α)(Ala)); 2.05 (dsept., J = 6.8, 6.8, CH(β)(Val)); 1.33–1.29 (m, 6 Me(Aib), Me(Ala)); 0.93, 0.91 (2d, J = 7.0, 2 Me(Val)). ¹³C-NMR ((D₆)DMSO, 150 MHz): 175.6 (s, CO(Aib⁵)); 173.3 (s, CO(Aib⁴)); 172.6 (s, CO(Aib³)); 170.9 (s, CO(Val)); 169.8 (s, CO(Ala)); 58.3 (d, CH(α)(Val)); 56.1 (s, C(α)(Aib³)); 55.7 (s, C(α)(Aib⁵)); 54.8 (s, C(α)(Aib³)); 47.9 (d, CH(α)(Ala)); 30.0 (d, CH(β)(Val)); 25.0 (q, 1 Me of 2 Me(Aib⁵)); 24.9 (q, 1 Me of 2 Me(Aib⁴)); 24.8, 24.5 (2q, 2
Me(Aib5)); 24.4 (q, 1 Me of 2 Me(Aib4)); 24.2 (q, 1 Me of 2 Me(Aib3)); 19.2, 18.2 (2q, 2 Me of Val); 17.4 (q, Me(Ala)). ESI-MS: 444 (100, [M + H]+.

2(S)-((2-[2-((2/S)-[(2/S)-Amino-1-oxopropyl]amino]-3-methyl-1-oxobutyl]amino)-3-phenyl-1-oxopropyl]amino]-2-methyl-1-oxopropyl]amino]-2-methyl-1-oxopropyl]amino)-4-methylpentanoic Acid (H-Ala–Val–Phe–Aib–Aib–Leu–OH; \texttextsuperscript{23}). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 5, 2, 5, 2, 3, 4, 3, 4, 5 and 6 to yield \texttextsuperscript{23} (5.3 mg, 6%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method B): \textit{t}\textsubscript{R} = 11.1 min, \textit{m/z} = 619 (100, [M + H]+). IR (KBr): 3421 \textit{s}, 3312 \textit{s}, 3065 \textit{m}, 3034 \textit{m}, 2964 \textit{s}, 2939 \textit{m}, 2876 \textit{m}, 1668 \textit{vs}, 1534 \textit{vs}, 1468 \textit{m}, 1460 \textit{m}, 1442 \textit{m}, 1388 \textit{m}, 1367 \textit{w}, 1203 \textit{vs}, 1190 \textit{sh}, 1140 \textit{s}, 837 \textit{w}, 800 \textit{w}, 745 \textit{w}, 722 \textit{w}, 700w. 1H-NMR ((D\textsubscript{6})DMSO, 600 MHz): ca. 12.4–12.1 (br. s, COOH); 8.32 (d, \textit{J} = 5.7, NH(Phe)); 8.26 (d, \textit{J} = 8.6, NH(Val)); 8.19 (s, NH(Aib4)); 8.04 (br. s, NH\textsubscript{3}(Ala)); 7.32 (s, NH(Aib5)); 7.30–7.18 (m, 5 arom. H, NH(Leu)); 4.41 (\textit{ddd}, \textit{J} = 8.1, 6.3, 6.3, CH(\alpha)(Phe)); 4.15 (\textit{dd}, \textit{J} = 8.2, 8.2, CH(\alpha)(Val)); 4.13–4.10 (m, CH(\alpha)(Leu)); 3.93–3.90 (m, CH(\alpha)(Ala)); 2.95 (\textit{dd}, \textit{J} = 13.9, 6.5, 1 H of CH\textsubscript{2}(Phe)); 2.88 (\textit{dd}, \textit{J} = 13.9, 8.5, 1 H of CH\textsubscript{2}(Phe)); 1.92 (dsept., \textit{J} = 7.0, 7.0, CH(\beta)(Val)); 1.72–1.63 (m, CH(\gamma)(Leu), 1 H of CH\textsubscript{2}(Leu)); 1.47–1.42 (m, 1 H of CH\textsubscript{2}(Leu)); 1.34, 1.31 (2s, 2 Me(Aib5)); 1.26 (d, \textit{J} = 7.0, Me(Ala)); 1.19, 1.12 (2s, 2 Me(Aib5)); 0.90 (d, \textit{J} = 6.7, 1 Me of 2 Me(Val)); 0.87 (d, \textit{J} = 6.5, 1 Me of 2 Me(Leu)); 0.84 (d, \textit{J} = 6.7, 1 Me of 2 Me(Val)); 0.81 (d, \textit{J} = 6.5, 1 Me of 2 Me(Leu)). 13C-NMR ((D\textsubscript{6})DMSO, 150 MHz): 174.1 (s, CO(Aib5)); 173.8 (s, CO(Leu)); 172.6 (s, CO(Aib5)); 171.0 (s, CO(Phe)); 170.7 (s, CO(Val)); 169.2 (s, CO(Ala)); 137.0 (s, arom. C); 129.1, 127.9, 126.2 (3d, 5 arom. CH); 57.8 (d, CH(\alpha)(Val)); 55.9 (s, C (\alpha)(Aib4)); 55.6
(s, C(α)(Aib5)); 54.5 (d, CH(α)(Phe)); 50.3 (d, CH(α)(Leu)); 47.8 (d, CH(α)(Ala)); 39.6 (t, CH2(Leu)); 36.9 (t, CH2(Phe)); 30.3 (d, CH(β)(Val)); 25.9 (q, 1 Me of 2 Me(Aib5)); 25.8 (q, 1 Me of 2 Me(Aib5)); 23.8 (d, CH(γ)(Leu)); 23.5 (q, 1 Me of 2 Me(Aib4)); 23.0, 21.0 (2q, 2 Me(Leu)); 19.2, 18.5 (2q, 2 Me(Val)); 17.3 (q, Me(Ala)). ESI-MS: 619 (100, [M + H]+), 488 (21, [M – Leu]+), 403 (10, [M – (Aib–Leu)]+).

2(S)-[(2-{2-[(2-[2(S)-[2(S)-Amino-1-oxopropyl]amino]-3-methyl-1-oxobutyl]amino)-3-phenyl-1-oxopropyl]amino]2-methyl-1-oxomethyl]amino]-4-methylpentanoic Acid (H–Ala–Val–Phe–Aib–Aib–Aib–Leu–OH; 24). PAM resin (200 mg, 0.124 mmol) was treated as described in GP 1, 2, 5, 2, 5, 2, 3, 4, 3, 4, 3, 4, 5 and 6 to yield 24 (8.6 mg, 9%) as a colorless powder after prep. HPLC purification and lyophilization. HPLC-MS (method B): tR = 11.1 min, m/z = 704 (100, [M + H]+).

IR (KBr): 3422s, 3307s, 3065s, 3033s, 2964s, 2941s, 2875m, 1667vs, 1532vs, 1468m, 1458m, 1442m, 1387m, 1366m, 1276m, 1203vs, 1188s, 1140s, 945w, 923w, 837w, 800w, 722w, 700w. 1H-NMR ((D6)DMSO, 600 MHz): ca. 12.3–12.1 (br. s, COOH); 8.44 (s, NH(Aib4)); 8.42 (d, J = 4.9, NH(Phe)); 8.26 (d, J = 8.6, NH(Val)); 8.04 (br. s, NH3(Ala)); 7.53, 7.41 (2s, NH(Aib5), NH(Aib6)); 7.40 (d, J = 7.9, NH(Leu)); 7.28–7.20 (m, 5 arom. H); 4.41 (td, J = 7.6, 5.1, CH(α)(Phe)); 4.20 (dd, J = 8.1, 8.1, CH(α)(Val)); 4.18–4.14 (m, CH(α)(Leu)); 3.91 (br. s, CH(α)(Ala)); 2.96–2.89 (m, CH2(Phe)); 1.93 (dsept., J = 7.0, 7.0, CH(β)(Val)); 1.78–1.75 (m, CH(γ)(Leu)); 1.73–1.69, 1.44–1.39 (2m, CH3(Leu)); 1.34, 1.33, 1.30, 1.26 (4s, 4 Me of 6 Me(Aib)); 1.26 (d, J = 6.5, Me(Ala)); 1.20, 1.14 (2s, 2 Me of 6 Me(Aib)); 0.94, 0.88 (2d, J = 6.8, 2 Me(Val)); 0.83, 0.81 (2d, J = 6.6, 2
Me(Leu)). 13C-NMR ((D$_6$)DMSO, 150 MHz): 174.3, 174.1 (2s, 2 CO of 3 CO(Aib)); 174.0 (s, CO(Leu)); 173.0 (s, 1 CO of 3 CO(Aib)); 171.7 (s, CO(Phe)); 170.8 (s, CO(Val)); 169.2 (s, CO(Ala)); 163.8 (s, arom. C); 129.2, 127.9, 126.3 (3d, 5 arom. CH); 57.6 (d, CH(α)(Val)); 56.1, 55.8, 55.7 (3s, 3 C(α)(Aib)); 54.5 (d, CH(α)(Phe)); 50.2 (d, CH(α)(Leu)); 47.8 (d, CH(α)(Ala)); 39.8 (t, CH$_2$(Leu)); 36.7 (t, CH$_2$(Phe)); 30.3 (d, CH(β)(Val)); 26.7, 26.1, 25.9 (3q, 3 Me of 6 Me(Aib)); 23.6 (d, CH(γ)(Leu)); 23.4, 23.2 (2q, 2 Me of 6 Me(Aib)); 23.0 (q, 1 Me of 2 Me(Leu)); 22.9 (q, 1 Me of 6 Me(Aib); 21.0 (q, 1 Me of 2 Me(Leu)); 19.2, 18.5 (2q, 2 Me(Val)); 17.3 (q, Me(Ala)). ESI-MS: 704 (100, [M + H$^+$]), 573 (21, [M – Leu$^+$]).

5. Derivatization of (S,S,S)-13 and (S,R,S)-13. 2(S)-{[2(S)-{(2S)-[4-Bromobenzoyl]amino]-1-oxopropyl]amino}-2-benzyl-1-oxopropyl]amino}-4-methylpentanoic Acid (p-BrBz–Ala–Phe(2Me)–Leu–OH; (S,S,S)-14) and 2(S)-{[2(R)-{(2S)-[4-Bromobenzoyl]amino]-1-oxopropyl]amino}-2-benzyl-1-oxopropyl]amino}-4-methylpentanoic Acid (p-BrBz–Ala–Phe(2Me)–Leu–OH; (S,R,S)-14). At 0° 4-bromobenzoylchloride (8 mg, 0.036 mmol) was added to a mixture of (S,S,S)-13 (ca. 12 mg, 0.025 mmol) and K$_2$CO$_3$ (12 mg, 0.087 mmol) and (S,R,S)-13 (ca. 12 mg, 0.025 mmol) and K$_2$CO$_3$ (12 mg, 0.087 mmol), resp., in acetone (5 ml) and H$_2$O (1 ml), then stirred at r.t. for 2 h. The org. solvent was removed under reduced pressure and the residue acidified with diluted aq. HCl. The resulting precipitation was filtered and purified by prep. TLC (CH$_2$Cl$_2$/MeOH 10:1; 2 × dev.) yielding colorless powders (8 mg (59%) and 6 mg (44%), resp.). Suitable crystals for the X-ray crystal-structure determination of (S,S,S)-14 were grown from MeOH/CHCl$_3$/Et$_2$O. Data of (S,S,S)-14. ESI-MS: 593 (10), 592 (30,
\[M(81\text{Br}) - H + 2 \text{Na}^+ \], 591 (10), 590 (33, \[M(79\text{Br}) - H + 2 \text{Na}^+ \]), 571 (42), 570 (100, \[M(81\text{Br}) + \text{Na}^+ \]), 569 (34), 568 (86, \[M(79\text{Br}) + \text{Na}^+ \]).

Data of (S,R,S)-14. ESI-MS: 593 (5), 592 (11, \[M(81\text{Br}) - H + 2 \text{Na}^+ \]), 591 (5), 590 (11, \[M(79\text{Br}) - H + 2 \text{Na}^+ \]), 571 (29), 570 (100, \[M(81\text{Br}) + \text{Na}^+ \]), 569 (26), 568 (72, \[M(79\text{Br}) + \text{Na}^+ \]).

6. X-Ray Crystal-Structure Determination of (S,S,S)-14, (see Table 3 and Fig. 1). A crystal of C\text{26}H\text{32}BrN\text{3}O\text{5}·\text{MeOH}, obtained from MeOH/CHCl\text{3}/Et\text{2}O, was used for a low-temperature X-ray structure determination. All measurements were made on a Nonius KappaCCD area-detector diffractometer [27] using graphite-monochromated Mo\text{K}\alpha radiation (\(\lambda \) 0.71073 Å) and an Oxford Cryosystems Cryostream 700 cooler. The data collection and refinement parameters are given in Table 3 and a view of the molecule is shown in the Fig.

Data reduction was performed with HKL Denzo and Scalepack [28]. The intensities were corrected for Lorentz and polarization effects, and an absorption correction based on the multi-scan method [29] was applied. Equivalent reflections, other than Friedel pairs, were merged.

Table 3

The structure was solved by direct methods using SHELXS97 [30], which revealed the positions of all non-H-atoms. There are two symmetry-independent

\footnote{CCDC-287054 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.}
peptide and two MeOH molecules in the asymmetric unit. The atomic coordinates were tested carefully for a relationship from a higher symmetry space group by using the program PLATON [31], but none could be found. The non-hydrogen atoms were refined anisotropically. The hydroxy H-atoms of the peptide and MeOH molecules were placed in the positions indicated by a difference electron density map and their positions were allowed to refine together with individual isotropic displacement parameters. All remaining H-atoms were placed in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2U$_{eq}$ of its parent C-atom (1.5U$_{eq}$ for the methyl groups). The refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimised the function $\Sigma w(F_o^2 - F_c^2)^2$. A correction for secondary extinction was not applied. Eleven reflections, whose intensities were considered to be extreme outliers, were omitted from the final refinement. Refinement of the absolute structure parameter [32] yielded a value of 0.00(1), which confidently confirms that the refined model represents the true enantiomorph. Neutral atom scattering factors for non-H-atoms were taken from [33a], and the scattering factors for H-atoms were taken from [34]. Anomalous dispersion effects were included in F_c [35]; the values for f' and f'' were those of [33b]. The values of the mass attenuation coefficients are those of [33c]. All calculations were performed using the SHELXL97 [36] program.

References

McAuley, *ibid.* Table 4.2.6.8, p. 219; c) D. C. Creagh, J. H. Hubbell, *ibid.* Table 4.2.4.3, p. 200.

Tables

Table 1. Synthesized peptides containing Aib, Acp, Thp and Phe(2Me) residues.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–Ala–Acp–Phe–OH (11a)</td>
<td>37</td>
</tr>
<tr>
<td>H–Ala–Thp–Phe–OH (11b)</td>
<td>38</td>
</tr>
<tr>
<td>H–Ala–Phe(2Me)–Leu–OH (13)</td>
<td>49</td>
</tr>
<tr>
<td>H–Ala–Thp–Val–Thp–Phe–OH (16)</td>
<td>16</td>
</tr>
<tr>
<td>H–Ala–Aib–Val–Acp–Phe–Thp–Leu–OH (18)</td>
<td>13</td>
</tr>
</tbody>
</table>

a) Yield of product isolated after HPLC purification, based on resin loading.

Table 2. Synthesized peptides containing poly-Aib motifs.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–Aib–Aib–Aib–OH (19)</td>
<td>33</td>
</tr>
<tr>
<td>H–Ala–Aib–Aib–OH (20)</td>
<td>41</td>
</tr>
<tr>
<td>H–Ala–Aib–Aib–Aib–OH (21)</td>
<td>12 b)</td>
</tr>
<tr>
<td>H–Ala–Val–Aib–Aib–Aib–OH (22)</td>
<td>16</td>
</tr>
<tr>
<td>H–Ala–Val–Phe–Aib–Aib–Leu–OH (23)</td>
<td>6</td>
</tr>
<tr>
<td>H–Ala–Val–Phe–Aib–Aib–Aib–Leu–OH (24)</td>
<td>9</td>
</tr>
</tbody>
</table>

a) Yield of product isolated after HPLC purification, based on resin loading.

b) not pure
Table 3. Crystallographic data of compound (S,S,S)-14.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallized from</td>
<td>MeOH/CHCl₃/Et₂O</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C₂₇H₃₆BrN₃O₆</td>
</tr>
<tr>
<td>Formula weight [g mol⁻¹]</td>
<td>578.50</td>
</tr>
<tr>
<td>Crystal color, habit</td>
<td>colorless, plate</td>
</tr>
<tr>
<td>Crystal dimensions [mm]</td>
<td>0.03 × 0.15 × 0.22</td>
</tr>
<tr>
<td>Temperature [K]</td>
<td>160(1)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Reflections for cell determination</td>
<td>84590</td>
</tr>
<tr>
<td>2θ range for cell determination [°]</td>
<td>4–50</td>
</tr>
<tr>
<td>Unit cell parameters a [Å]</td>
<td>15.2292(6)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>10.1998(4)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>18.6076(8)</td>
</tr>
<tr>
<td>β [°]</td>
<td>91.810(2)</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>2889.0(2)</td>
</tr>
<tr>
<td>Dₓ [g cm⁻³]</td>
<td>1.330</td>
</tr>
<tr>
<td>μ(MoKα) [mm⁻¹]</td>
<td>1.470</td>
</tr>
<tr>
<td>Scan type</td>
<td>ω</td>
</tr>
<tr>
<td>2θ(ₘₐₓ) [°]</td>
<td>50</td>
</tr>
<tr>
<td>Transmission factors (min; max)</td>
<td>0.737; 0.982</td>
</tr>
<tr>
<td>Total reflections measured</td>
<td>43528</td>
</tr>
<tr>
<td>Symmetry independent reflections</td>
<td>10174</td>
</tr>
<tr>
<td>Reflections with I > 2σ(I)</td>
<td>6247</td>
</tr>
<tr>
<td>Reflections used in refinement</td>
<td>10163</td>
</tr>
<tr>
<td>Parameters refined; restraints</td>
<td>693; 1</td>
</tr>
<tr>
<td>Final R(F) [I > 2σ(I) reflections]</td>
<td>0.0646</td>
</tr>
<tr>
<td>wR(F²) (all data)</td>
<td>0.1480</td>
</tr>
<tr>
<td>Weights: w = [σ²(F₀²) + (0.0518P)² + 1.5382P]⁻¹ where P = (F₀² + 2F_c²) / 3</td>
<td></td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.036</td>
</tr>
<tr>
<td>Final Δmax/σ</td>
<td>0.001</td>
</tr>
<tr>
<td>Δρ (max; min) [e Å⁻³]</td>
<td>0.49; -0.44</td>
</tr>
</tbody>
</table>
Legends

Table 1. Synthesized peptides containing Aib, Acp, Thp and Phe(2Me) residues.
Table 2. Synthesized peptides containing poly-Aib motifs.
Table 3. Crystallographic data of compound (S,S,S)-14.

Scheme 1. DIPEA = N,N-diisopropylethylamine; HOBt: 1-hydroxybenzotriazole; PyBOP = (1H-benzotriazol-1-yloxy)triyprrolidinophosphonium hexafluorophosphate; TFA = trifluoroacetic acid; TIPS = triisopropylsilane.

Fig. 1. ORTEP Plot [17] of the molecular structure of one of the two symmetry-independent molecules of (S,S,S)-14 (50% probability ellipsoids; arbitrary numbering of atoms; the MeOH molecules are not shown).
Formula collections

Formula collection 1

8
9
10
12

Formula collection 2

11a
11b
Schemes

Scheme 1

1) COCl₂ (1.9 M in PhMe), THF
2) H-Ala-ÔBu·HCl, DIPEA, CH₂Cl₂

1. H–Phe–O⁻Bu·HCl, HOBt, PyBOP, DIPEA, DMF
2. 33% HBr/AcOH

HCl (3 M), THF/H₂O
Scheme 2

4-bromobenzoyl chloride, K$_2$CO$_3$, acetone, H$_2$O

7 steps, 49% yield

(preparative HPLC)

(S,S)-13, (S,R)-13

2 'azirine/oxazolone method' on solid-phase

(S,S)-13

4-bromobenzoyl chloride, K$_2$CO$_3$, acetone, H$_2$O

(S,S)-14

(S,R)-13

4-bromobenzoyl chloride, K$_2$CO$_3$, acetone, H$_2$O

(S,R)-14
Figure 1
Scheme for Table of Contents

\[\text{linker} \quad \text{N} \quad \text{H} \quad \text{R}^1 \quad \text{O} \quad \text{R} \quad \text{linker} \]

\[\text{R} = \text{OtBu} \quad \text{TFA, CH}_2\text{Cl}_2, \quad \text{TIPS} \]

\[\text{R} = \text{OH} \]

\[\text{HCl (3 M), THF/H}_2\text{O} \]

\[\text{R} = \text{N(Me)Ph} \quad \text{R} = \text{OH} \]

\[\text{CH}_2\text{Cl}_2 \]

\[\text{R}^2 \]

\[\text{R}^3 \]

\[\text{Ph} \]

\[\text{linker} \quad \text{N} \quad \text{H} \quad \text{R}^1 \quad \text{O} \quad \text{R}_2 \quad \text{linker} \]

\[\text{R} = \text{N(Me)Ph} \quad \text{R} = \text{OH} \]

\[\text{HCl (3 M), THF/H}_2\text{O} \]

\[\text{CH}_2\text{Cl}_2 \]