Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-62134

Hümmler, Nicolas; Schneider, Christina; Giessl, Andreas; Bauer, Reinhard; Walkinshaw, Gail; Gassmann, Max; Rascher, Wolfgang; Trollmann, Regina (2012). Acute hypoxia modifies regulation of neuroglobin in the neonatal mouse brain. Experimental Neurology, 236(1):112-121.

[img]
Preview
Accepted Version
PDF
700kB

Abstract

Among endogenous adaptive systems to hypoxia, neuroglobin, a recently discovered heme protein, was suggested as a novel oxygen-dependent neuroprotectant. We aimed to characterize i) maturational age-related regulation of neuroglobin in the developing mouse brain under normoxic and hypoxic conditions, and ii) the role of hypoxia-inducible transcription factors (HIFs) as possible mediators of O(2)-dependent regulation of neuroglobin in vitro and in vivo. During early stages of postnatal brain maturation (P0-P14) neuroglobin mRNA levels significantly increased in developing mouse forebrains. By immunohistochemical analysis we confirmed expression of neuroglobin protein in the cytoplasm of developing neurons but not glial cells under normoxic conditions. Exposure of the immature brains (P0, P7) to acute (8% O(2), 6h) and chronic systemic hypoxia (10% O(2), 7days) led to differential activation of neuroglobin varying with maturational stage (P0, P7) and severity of hypoxia. This observation may indicate that neuroglobin is involved in adaptive responses of immature neurons to acute hypoxia during an early stage of mouse brain maturation (P0). In response to activation of the HIF system by prolyl-4-hydroxylase inhibitor (FG-4497), neuroglobin mRNA expression was significantly up-regulated in primary mouse cortical neurons (DIV6) exposed to normoxia and hypoxia (1% O(2)) compared to non-treated controls. In conclusion, present results strongly indicate that cerebral regulation of neuroglobin is related to maturational stage and that hypoxia-induced neuroglobin up-regulation is modified by the HIF system.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:07 May 2012 12:10
Last Modified:30 Nov 2013 03:16
Publisher:Elsevier
ISSN:0014-4886
Funders:German Research Foundation
Publisher DOI:10.1016/j.expneurol.2012.04.006
PubMed ID:22548980
Citations:Web of Science®. Times Cited: 3
Google Scholar™
Scopus®. Citation Count: 4

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page