Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-62161

Paul, F; Maisch, M; Rothenbühler, C; Hoelzle, M; Haeberli, W (2007). Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling. Global and Planetary Change, 55(4):343-357.

[img]Published Version (English)
PDF - Registered users only
4MB

Abstract

The observed rapid glacier wastage in the European Alps during the past 20 years already has strong impacts on the natural environment (rock fall, lake formation) as well as on human activities (tourism, hydro-power production, etc.) and poses several new challenges also for glacier monitoring. With a further increase of global mean temperature in the future, it is likely that Alpine glaciers and the high-mountain environment as an entire system will further develop into a state of imbalance. Hence, the assessment of future glacier geometries is a valuable prerequisite for various impact studies. In order to calculate and visualize in a consistent manner future glacier extent for a large number of individual glaciers (> 100) according to a given climate change scenario, we have developed an automated and simple but robust approach that is based on an empirical relationship between glacier size and the steady-state accumulation area ratio (AAR₀) in the Alps. The model requires digital glacier outlines and a digital elevation model (DEM) only and calculates new glacier geometries from a given shift of the steady-state equilibrium line altitude (ELA₀) by means of hypsographic modelling. We have calculated changes in number, area and volume for 3062 individual glacier units in Switzerland and applied six step changes in ELA₀ (from + 100 to + 600 m) combined with four different values of the AAR₀ (0.5, 0.6, 0.67, 0.75). For an AAR₀ of 0.6 and an ELA₀ rise of 200 m (400 m) we calculate a total area loss of − 54% (− 80%) and a corresponding volume loss of − 50% (− 78%) compared to the 1973 glacier extent. In combination with a geocoded satellite image, the future glacier outlines are also used for automated rendering of perspective visualisations. This is a very attractive tool for communicating research results to the general public. Our study is illustrated for a test site in the Upper Engadine (Switzerland), where landscape changes above timberline play an important role for the local economy. The model is seen as a first-step approach, where several parts can be (and should be) further developed.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
DDC:910 Geography & travel
Language:English
Date:February 2007
Deposited On:20 Jul 2012 23:13
Last Modified:30 Nov 2013 16:16
Publisher:Elsevier
ISSN:0921-8181
Publisher DOI:10.1016/j.gloplacha.2006.08.003
Citations:Web of Science®. Times Cited: 33
Google Scholar™
Scopus®. Citation Count: 37

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page