UZH-Logo

Maintenance Infos

Permafrost evolution in the Swiss Alps in a changing climate and the role of the snow cover


Luetschg, M; Haeberli, W (2005). Permafrost evolution in the Swiss Alps in a changing climate and the role of the snow cover. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 59(2):78-83.

Abstract

The snow cover plays a decisive role on Alpine permafrost distribution with respect to its insulating properties and strong short-wave reflectivity. The complex interaction processes between atmosphere, snow cover and permafrost complicate direct predictions of the effect of changing climate parameters on ground temperatures and permafrost distribution with respect to snow cover thickness and snow period variations. In this study, the soil-extended version of the one-dimensional mass and energy balance model SNOWPACK was applied to study the ground thermal influence of realistic climate change scenarios of changing mean annual air temperatures, and summer and winter precipitation. The increasing air temperatures of two climate scenarios combined with the effect of earlier snow disappearance in spring cause warmer ground temperatures throughout the whole soil profile and steadily increasing active layer depth. From the resulting mean annual ground surface temperature changes under these climate scenarios, the lower limit of permafrost occurrence in the Swiss Alpine region is estimated to be raised between 170 m and 580 m over a period of 80 years. The presented simulation results provide an estimation of the magnitudes of climate change impact on permafrost distribution, including the complex interaction processes between atmosphere, snow cover and permafrost.

The snow cover plays a decisive role on Alpine permafrost distribution with respect to its insulating properties and strong short-wave reflectivity. The complex interaction processes between atmosphere, snow cover and permafrost complicate direct predictions of the effect of changing climate parameters on ground temperatures and permafrost distribution with respect to snow cover thickness and snow period variations. In this study, the soil-extended version of the one-dimensional mass and energy balance model SNOWPACK was applied to study the ground thermal influence of realistic climate change scenarios of changing mean annual air temperatures, and summer and winter precipitation. The increasing air temperatures of two climate scenarios combined with the effect of earlier snow disappearance in spring cause warmer ground temperatures throughout the whole soil profile and steadily increasing active layer depth. From the resulting mean annual ground surface temperature changes under these climate scenarios, the lower limit of permafrost occurrence in the Swiss Alpine region is estimated to be raised between 170 m and 580 m over a period of 80 years. The presented simulation results provide an estimation of the magnitudes of climate change impact on permafrost distribution, including the complex interaction processes between atmosphere, snow cover and permafrost.

Citations

Altmetrics

Downloads

2 downloads since deposited on 20 Jul 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2005
Deposited On:20 Jul 2012 23:01
Last Modified:05 Apr 2016 15:48
Publisher:Taylor & Francis
ISSN:0029-1951
Publisher DOI:10.1080/00291950510020583
Permanent URL: http://doi.org/10.5167/uzh-62191

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 197kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations