Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-62728

Guggenberger, R; Winklhofer, S; Osterhoff, G; Wanner, G A; Fortunati, M; Andreisek, G; Alkadhi, H; Stolzmann, P (2012). Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. European Radiology, 22(11):2357-2364.

[img]Published Version
PDF - Registered users only
View at publisher


OBJECTIVES: To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels. METHODS: Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105 keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level. RESULTS: Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81-1.00, κ = 0.54-0.77). HU values of spinal fusion implants were significantly different among vendors (P < 0.001), spine levels (P < 0.01) and among SECT, monoenergetic DECT of 64, 69, 88, 105 keV and OPTkeV (P < 0.01). Image quality was significantly (P < 0.001) different between datasets and improved with higher monoenergies of DECT compared with SECT (V = 0.58, P < 0.001). Artefacts decreased significantly (V = 0.51, P < 0.001) at higher monoenergies. OPTkeV values ranged from 123-141 keV. OPTkeV according to vendor and spine level are presented herein. CONCLUSIONS: Monoenergetic DECT provides significantly better image quality and less metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended. KEY POINTS: • Artefacts pose problems for CT following posterior spinal fusion implants. • CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT. • DECT extrapolation improves image quality and reduces metallic artefacts over SECT. • There were considerable differences in monoenergy values among vendors and spine levels. • Use of individualised monoenergy values is indicated for different metallic hardware devices.


27 citations in Web of Science®
32 citations in Scopus®
Google Scholar™



0 downloads since deposited on 07 Jun 2012
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Trauma Surgery
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Deposited On:07 Jun 2012 06:17
Last Modified:05 Apr 2016 15:50
Publisher DOI:10.1007/s00330-012-2501-7
PubMed ID:22645043

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page