UZH-Logo

Temporal alignment


Dignös, Anton; Böhlen, Michael H; Gamper, Johann (2012). Temporal alignment. In: ACM SIGMOD 2012 international conference on Management of Data, Scottsdale, Arizona, USA, 20 May 2012 - 24 May 2012, 433-444.

Abstract

In order to process interval timestamped data, the sequenced semantics has been proposed. This paper presents a relational algebra solution that provides native support for the three properties of the sequenced semantics: snapshot reducibility, extended snapshot reducibility, and change preservation. We introduce two temporal primitives, temporal splitter and temporal aligner, and define rules that use these primitives to reduce the operators of a temporal algebra to their nontemporal counterparts. Our solution supports the three properties of the sequenced semantics through interval adjustment and timestamp propagation. We have implemented the temporal primitives and reduction rules in the kernel of PostgreSQL to get native database support for processing interval timestamped data. The support is comprehensive and includes outer joins, antijoins, and aggregations with predicates and functions over the time intervals of argument relations. The implementation and empirical evaluation confirms effectiveness and scalability of our solution that leverages existing database query optimization techniques.

In order to process interval timestamped data, the sequenced semantics has been proposed. This paper presents a relational algebra solution that provides native support for the three properties of the sequenced semantics: snapshot reducibility, extended snapshot reducibility, and change preservation. We introduce two temporal primitives, temporal splitter and temporal aligner, and define rules that use these primitives to reduce the operators of a temporal algebra to their nontemporal counterparts. Our solution supports the three properties of the sequenced semantics through interval adjustment and timestamp propagation. We have implemented the temporal primitives and reduction rules in the kernel of PostgreSQL to get native database support for processing interval timestamped data. The support is comprehensive and includes outer joins, antijoins, and aggregations with predicates and functions over the time intervals of argument relations. The implementation and empirical evaluation confirms effectiveness and scalability of our solution that leverages existing database query optimization techniques.

Citations

Altmetrics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:24 May 2012
Deposited On:22 Jun 2012 21:59
Last Modified:05 Apr 2016 15:51
Publisher:ACM
Series Name:SIGMOD '12
ISBN:978-1-4503-1247-9
Free access at:Official URL. An embargo period may apply.
Publisher DOI:10.1145/2213836.2213886
Official URL:http://dl.acm.org/authorize?6776877
Related URLs:http://www.sigmod.org/2012/ (Organisation)
Other Identification Number:merlin-id:7011

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations