UZH-Logo

The influence of empirical contact networks on modelling diseases in cattle


Duncan, A J; Gunn, G J; Lewis, F I; Umstatter, C; Humphry, R W (2012). The influence of empirical contact networks on modelling diseases in cattle. Epidemics, 4(3):117-123.

Abstract

We present two stochastic models of the passage of an SEIR (susceptible–latent–infected–resistant) disease through herds of cattle. One model is based on a contact network constructed via continuously recorded interaction data from two herds of cattle, the other, a matching network constructed using the principles of mass-action mixing. The recorded contact data were produced by attaching proximity data loggers to two separate herds of cattle during two separate recording periods. The network constructed using the principles of mass-action mixing uses the same number of contacts as the recorded network but distributes them randomly amongst the animals. The recorded networks had a greater number of repeated contacts, lower closeness and clustering scores and greater average path length than the mass-action networks. A lower proportion of simulations of the recorded network produce any disease spread when compared to those simulations of the mass-action network and, of those that did, fewer infected animals were predicted. For all parameter values tested, within the sensitivity analysis, similar differences were found between the recorded and mass-action network models.

We present two stochastic models of the passage of an SEIR (susceptible–latent–infected–resistant) disease through herds of cattle. One model is based on a contact network constructed via continuously recorded interaction data from two herds of cattle, the other, a matching network constructed using the principles of mass-action mixing. The recorded contact data were produced by attaching proximity data loggers to two separate herds of cattle during two separate recording periods. The network constructed using the principles of mass-action mixing uses the same number of contacts as the recorded network but distributes them randomly amongst the animals. The recorded networks had a greater number of repeated contacts, lower closeness and clustering scores and greater average path length than the mass-action networks. A lower proportion of simulations of the recorded network produce any disease spread when compared to those simulations of the mass-action network and, of those that did, fewer infected animals were predicted. For all parameter values tested, within the sensitivity analysis, similar differences were found between the recorded and mass-action network models.

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

85 downloads since deposited on 04 Jul 2012
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Chair in Veterinary Epidemiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:04 Jul 2012 08:48
Last Modified:05 Apr 2016 15:51
Publisher:Elsevier
ISSN:1878-0067
Publisher DOI:10.1016/j.epidem.2012.04.003
Permanent URL: http://doi.org/10.5167/uzh-62988

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 131kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations