UZH-Logo

Maintenance Infos

Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps


Huggel, C; Kääb, A; Haeberli, W; Teysseire, P; Paul, F (2002). Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2):316-330.

Abstract

Glacier lakes are a common phenomenon in high mountain areas. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. In several high mountain ranges around the world, a grave uncertainty about the hazard potential of glacier lakes still exists, especially with respect to the effects of accelerating rates of glacier retreat as a consequence of atmospheric warming. Area-wide detection and modeling of glacier lake hazard potentials is, therefore, a major challenge. In this study, an approach integrating three scale levels allows for the progressive focus on critical glacier lakes. Remote sensing methods for application in glacier lake hazard assessment are presented, and include channel indexing, data fusion, and change detection. Each method matches the requirements of a certain scale level. For estimating potential disaster amplitudes, assessments must be made of maximum discharge and runout distance of outbursts floods and debris flows. Existing empirical relations are evaluated and complementary ones as derived from available data are proposed. Tests with observations from a recent outburst event from a moraine-dammed lake in the Swiss Alps show the basic applicability of the proposed techniques and the usefulness of empirical relations for first hazard assessments. In particular, the observed runout distance of the debris flow resulting from the outburst does not exceed the empirically estimated maximum runout distance. A list of decision criteria and related remote sensing techniques are discussed in conclusion. Such a list is an essential tool for evaluating the hazard potential of a lake. A systematic application of remote sensing based methods for glacier lake hazard assessment is recommended.

Glacier lakes are a common phenomenon in high mountain areas. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. In several high mountain ranges around the world, a grave uncertainty about the hazard potential of glacier lakes still exists, especially with respect to the effects of accelerating rates of glacier retreat as a consequence of atmospheric warming. Area-wide detection and modeling of glacier lake hazard potentials is, therefore, a major challenge. In this study, an approach integrating three scale levels allows for the progressive focus on critical glacier lakes. Remote sensing methods for application in glacier lake hazard assessment are presented, and include channel indexing, data fusion, and change detection. Each method matches the requirements of a certain scale level. For estimating potential disaster amplitudes, assessments must be made of maximum discharge and runout distance of outbursts floods and debris flows. Existing empirical relations are evaluated and complementary ones as derived from available data are proposed. Tests with observations from a recent outburst event from a moraine-dammed lake in the Swiss Alps show the basic applicability of the proposed techniques and the usefulness of empirical relations for first hazard assessments. In particular, the observed runout distance of the debris flow resulting from the outburst does not exceed the empirically estimated maximum runout distance. A list of decision criteria and related remote sensing techniques are discussed in conclusion. Such a list is an essential tool for evaluating the hazard potential of a lake. A systematic application of remote sensing based methods for glacier lake hazard assessment is recommended.

Citations

143 citations in Web of Science®
167 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 20 Jul 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2002
Deposited On:20 Jul 2012 21:45
Last Modified:05 Apr 2016 15:52
Publisher:N R C Research Press
ISSN:0008-3674
Publisher DOI:10.1139/T01-099
Permanent URL: http://doi.org/10.5167/uzh-63230

Download

[img]
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations