The metabolisable hexoses D-glucose and D-mannose enhance the expression of IRS-2 but not of IRS-1 in pancreatic beta-cells

Amacker-François, I; Mohanty, S; Niessen, M; Spinas, G A; Trüb, T
Running title: D-glucose regulates IRS-2 biosynthesis

The Metabolisable Hexoses D-Glucose and D-Mannose Enhance the Expression of IRS-2 but not of IRS-1 in Pancreatic β-Cells

Isabelle Amacker-Françoins1#, Sonali Mohanty1#, Markus Niessen1*, Giatgen A. Spinas1, Thomas Trüb2

1Division of Endocrinology and Diabetes, University Hospital, Zurich, Switzerland. 2Department for equipment and logistics, University Zürich, 8057 Zürich, Switzerland. \# Authors contributed equally to this work

* corresponding author:

Phone: (+) 41 44 255 22 25
Fax: (+) 41 44 255 97 41
Email: markus.niessen@usz.ch

Key words: IRS-2, diabetes, β-cells, pancreatic islets

Abbreviations: IRS-1 and -2, insulin receptor substrate-1 and -2; CREB, cAMP response element binding protein; TBS-T, Tris-buffered saline/Tween 20; PBS, Phosphate Buffered Saline; HEPES, [4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid];
Abstract

D-glucose regulates maintenance and function of pancreatic β-cells. Several studies have shown that IRS-2, but not IRS-1, is necessary to maintain and sufficient to expand functional β-cell mass. We therefore analyzed the expression of IRS-2 and IRS-1 in β-cells after culture in the presence of various concentrations of D-glucose and other metabolisable or non-metabolisable hexoses. D-glucose increased *Irs-2* transcription and IRS-2 accumulation in a dose-dependent manner (1.6 to 25 mmol/l), with a 3-fold increased plateau after 10 h. In contrast, the expression of IRS-1 remained unaffected. D-glucose also induced phosphorylation of IRS-2 while non-metabolisable hexoses did neither affect expression nor phosphorylation. D-glucose-mediated elevation and phosphorylation of IRS-2 were independent of autocrine insulin action although insulin itself could transiently and slightly enhance IRS-2 expression.
Introduction

Although impaired peripheral insulin sensitivity is thought to be the primary cause for type 2 diabetes, it has been recognized that pancreatic β-cells can prevent the onset of overt hyperglycemia by secreting compensatory amounts of insulin. β-cell mass is regulated through changes in cell number and size by humoral, neural and intraislet factors (Bernard-Kargar and Ktorza, 2001; Bonner-Weir, 2000). Despite its chronically toxic effect D-glucose and some other hexoses are among the most potent stimulators of β-cell proliferation (Bonner-Weir et al., 1989; King and Chick, 1976; King et al., 1978; Swenne, 1992). On the other hand, studies with homo- and heterozygous knock-out mice have revealed that IRS-2 is required for maintenance of β-cell mass (Kubota et al., 2000; Withers et al., 1999; Withers et al., 1998). Elevated levels of IRS-2 in islets were found to prevent diabetes in animal models (Hennige et al., 2003). Our own recent work shows that overexpression of IRS-2 in isolated pancreatic islets is sufficient to induce proliferation and protect human β-cells from D-glucose induced apoptosis (Mohanty et al., 2005).

D-glucose acts synergistically with mitogens such as GH and IGF-I (Cousin et al., 1999; Hügl et al., 1998) which are both known to recruit IRS proteins for signal transduction. Studies by Jahla and co-workers (Jhala et al., 2003) suggest that D-glucose increases cytosolic concentrations of cAMP and Ca^{2+} and thereby activates transcription of Irs-2 via cAMP response element binding protein (CREB). However, the direct link between D-glucose and the regulation of IRS-2 biosynthesis remains to be elucidated.

In order to refine the current picture we determined the expression of IRS-2 in β-cells after stimulation with D-glucose, ex vivo. We demonstrate that the
metabolizable hexoses D-glucose and D-mannose but not the inert L-glucose, D-galactose and D-fructose increase the expression and phosphorylation of IRS-2 in islets and INS-1 cells. IRS-1 remained unaffected by hexose stimulation. D-glucose upregulated the expression of *Irs-2* mRNA after 30 minutes while the increase in IRS-2 protein content was observed with a delay of 2 hours. IRS-2 protein levels remained elevated for at least 48 hours.
Materials and Methods

Chemicals and antibodies

RPMI-1640 and cell culture reagents were purchased from Life Technologies (Basel, Switzerland). Human insulin was a gift from Novo Nordisk (Bagsvaerd, Denmark). Collagenase P (Clostridium histolyticum) was purchased from Roche (Rotkreuz, Switzerland). $[^{32}P]$-deoxycytidine triphosphate was obtained from Amersham Pharmacia Biotech (UK). Polyclonal antibodies against IRS-2 and β-actin, and a monoclonal antibody against phosphotyrosine were from Santa Cruz Biotechnology (USA). An antibody against a C-terminal peptide of human IRS-1 was generated in rabbits. Peroxidase-conjugated secondary antibodies were from Bio-Rad (Glattbrugg, Switzerland).

Cell culture

INS-1 cells (passages 83-95) were cultured in RPMI-1640 containing 11 mmol/l D-glucose, 10% (v/v) heat inactivated fetal calf serum, 2 mmol/l L-glutamine, 50 μg/ml gentamycin, 1 mmol/l sodium pyruvate, 10 mmol/l HEPES (pH 7.3), and 50 μmol/l β-mercaptoethanol, at 37°C, under 5% CO$_2$ in a humidified atmosphere (Asfari et al., 1992). 1 x 106 cells per 20-cm2-surface dish were pre-cultured in the presence of 11 mmol/l D-glucose for 3 days to about 80% confluence prior to the experiments. Glucose deprivation was in supplemented RPMI-1640 containing 1.6 mmol/l D-glucose for 24 h or as specified. A concentration of 1.6 mmol/l of D-glucose was chosen because β-cells are especially sensitive to culture conditions without D-glucose. Long starvation times up to 24 h at 1.6 mmol/l D-glucose were preferred to allow expression of target proteins to reach basal levels.

Isolation and culture of rat islets
Islets of Langerhans were isolated from 5 days old Zur:SIV rats by collagenase digestion of the pancreas followed by separation on Percoll gradients (Yamamoto et al., 1981). Three batches of approximately 100 islets were handpicked and precultured for 5 days in RPMI-1640 containing 11 mmol/l D-glucose and 10% newborn calf serum prior to glucose deprivation at 3.3 mmol/l D-glucose for 6 h.

Immunoblot analysis

INS-1 cells were lysed in ice-cold lysis buffer consisting of 50 mmol/l HEPES (pH 7.5), 140 mmol/l NaCl, 0.5% (v/v) Triton X-100, 1 mmol/l phenylmethylsulfonyl fluoride, 3 μg/ml leupeptin, 3 μg/ml aprotinin, 10 mmol/l sodium fluoride, 1 mmol/l disodium pyrophosphate, and 1 mmol/l sodium orthovanadate. Islets were collected in the same lysis buffer but without Triton X-100 and disrupted by multiple strokes of sonication. Thereafter, Triton X-100 was added to 2% (v/v) for complete protein extraction. Protein concentrations were determined with the bicinchoninic acid assay (Pierce, Rockford, IL). 5 μg INS-1 protein extract, and 20 μg islets extract, respectively, were subjected to SDS-polyacrylamide gel electrophoresis (Laemmli, 1970) and transferred onto nitrocellulose membranes (Protran BA 85, Schleicher and Schuell). Signals were visualized by enhanced chemiluminiscence (ECL, Amersham Life Science, UK) and quantified densitometrically.

Northern blot analysis

INS-1 cells were seeded onto 150 cm² dishes and cultured for 3 days. Total cellular RNA was isolated (Chomczynski and Sacchi, 1987), electrophoresed through agarose-formaldehyde gels and transferred to nylon membranes (Hybond-NX-RPK 5020 - Amersham Life Science, UK). ³²P-labelled DNA probes complementary to murine IRS-2 (Sun et al., 1995) and human β-actin (Alonso et al., 1986) were
hybridized at 42°C (Amasino, 1986). Specific activity of the probes was around 2 x 10^9 cpm/μg. Blots were analyzed in a phosphoimager (FUJIX BAS2000).

Insulin determination

Accumulated insulin in the cell supernatant was determined by a competitive ELISA using rat insulin as standard with a detection limit of 0.1 ng/ml (Kekow et al., 1988; Webster et al., 1990).

Results

D-glucose enhances accumulation of IRS-2, but not of IRS-1 in pancreatic β-cells

To assess if D-glucose concentration affects the accumulation of IRS-1 and IRS-2 in β-cells the insulinoma-derived β-cell line INS-1 was glucose deprived (for details see materials and methods) prior to exposure to 16 mmol/l D-glucose for up to 24 h. Incubation at 16 mmol/l D-glucose did not alter IRS-1 content whereas IRS-2 was increased up to 3-fold relative to actin (Fig. 1A). Moreover, the increase in IRS-2 was accompanied by post-translational modification(s) as reflected by a delay in protein mobility on SDS-PAGE (lanes 3, 5 and 7). Fig. 1C shows that this shift was lost after incubation of lysates with alkaline phosphatase or omitting phosphatase inhibitors during cell lysis. In contrast, the migration of IRS-1 protein was unaffected by D-glucose.

To test whether D-glucose can also affect IRS-2 expression in primary β-cells, isolated rat islets were used. As shown in Fig. 1B, after exposure for 6 h to 20 mmol/l D-glucose, islets and INS-1 β-cells responded similarly and both showed significantly increased IRS-2 content. Despite extended efforts and as described by others (Schuppin et al., 1998), IRS-1 levels in rat islets remained below our detection limit (not shown). Based on these observations we consider the insulinoma-derived INS-1
cell line as representative for pancreatic β-cells and all further experiments were performed in this model cell line.

Glucose enhances Irs-2 transcription and protein accumulation in a time and dose dependent manner

Northern blot analysis revealed that steady-state levels of Irs-2 mRNA increased slightly in the presence of 16 mmol/l D-glucose within a period of 4 h compared to actin. (Fig. 2A). Irs-2 mRNA increased prior to IRS-2 protein (compare Fig. 1A and 2B with Fig. 2A).

IRS-2 protein levels reached an elevated plateau after 6 to 10 h exposure to 16 mmol/l D-glucose and remained elevated for the entire investigated period of 48 h (Fig. 2B). In contrast, the extent of IRS-2 post-translational modification was transient with a peak at 10 h, after which it slowly declined. Culturing cells in the presence of D-glucose ranging from 5.5 mM to 25 mM resulted in increasingly higher levels of IRS-2 (Fig. 2C).

Hexoses need to be metabolized to increase IRS-2 protein accumulation

The biologically inert L-glucose did neither affect cellular IRS-2 content nor its posttranslational modification at 14.4 mmol/l when present at basal levels of 1.6 mmol/l D-glucose for up to 18 h (Fig. 3A). This finding rules out that increased osmolarity affected IRS-2 expression as observed for other genes (Okazaki et al., 1997). Furthermore, we tested other metabolisable and non-metabolisable hexoses at concentrations of 14.4 mmol/l supplemented with 1.6 mmol/l D-glucose to a total hexose concentration of 16 mmol/l. Like D-glucose, also D-mannose increased IRS-2 levels (Fig. 3B, lanes 2, 4, 8, and 10) whereas the metabolically inert D-galactose and
D-fructose (Ashcroft, 1980) did neither increase IRS-2 content nor affect its posttranslational modification (Fig. 3B, lanes 3, 5, 6, 9, 12, and 13). Finally, the non-glycolytic glucose analogues 2-deoxy-D-glucose and 3-0-methyl-glucose (Ashcroft et al., 1973) did not enhance IRS-2 biosynthesis at total hexose concentrations of 16 mmol/l in a period of 24 h (Fig. 3C, lanes 2 and 3).

Insulin enhances IRS-2 expression but does not act as a long-term mediator for D-glucose

Since D-glucose induces insulin secretion from β-cells autocrine insulin action could mediate the effect of D-glucose on Irs-2 expression. First we tested if insulin itself increases IRS-2 protein accumulation in INS-1 cells. Fig. 4A shows that 100 nmol/l insulin transiently enhances cellular IRS-2 content, but to a much lesser extent than 16 mmol/l D-glucose. However, the insulin concentration used in these experiments was supraphysiological (see Fig. 4C for comparison). Therefore we challenged INS-1 cells with 16 mmol/l D-glucose and with 100 nmol/l insulin simultaneously or individually and found (Fig. 4B) that D-glucose increased expression and phosphorylation of IRS-2 in the presence of 100 nmol/l insulin. In addition, we preincubated INS-1 cells in the presence of 250 μmol/l diazoxide prior to a D-glucose challenge. Diazoxide blocked glucose-induced insulin secretion (Fig. 4C), however, this did not attenuate the glucose-induced increase of IRS-2 accumulation and phosphorylation (Fig. 4C).
Discussion

Functional β-cell mass can increase to compensate for insulin resistance and thereby prevents the onset of overt hyperglycemia (Bonner-Weir, 2000). However, with time β-cells often fail and type 2 diabetes develops (Leahy and Weir, 1991; Ling et al., 1996). Hyperglycemia exerts dual and opposing effects on β-cells. Chronically elevated glucose levels result in pathological protein glycosylation, enhanced Fas-receptor expression and superoxide-mediated activation of uncoupling protein 2 (Liu et al., 2000; Maedler et al., 2001; Ristow et al., 2003). On the other hand, glucose stimulates β-cell growth and has been found to be anti-apoptotic (Bonner-Weir, 2000; Bonner-Weir et al., 1989; Hoorens et al., 1996). These opposing effects of D-glucose could depend on IRS-2 levels in β-cells. Various reports have shown that Irs-2 is required for the maintenance of β-cell mass in vivo. We have shown previously that upregulation of IRS-2 in isolated islets stimulates β-cell proliferation and inhibits D-glucose-induced apoptosis (Mohanty et al., 2005). Furthermore, D-glucose and IGF-I synergistically increase proliferation of β-cells. (Kubota et al., 2000; Withers et al., 1999; Withers et al., 1998). The present study provides further evidence that IRS-2 is the link between D-glucose and its effects on β-cells.

We found that D-glucose upregulates transcription of Irs-2 and increases IRS-2 protein levels for at least 48 hours while Irs-1 remained unaffected. This finding correlates well with reports showing D-glucose-induced β-cell growth to last for 96 h in hyperglycemic rats (Bonner-Weir et al., 1989). Our observations also support previously published data (Jhala et al., 2003) that showed D-glucose-dependent activation of the transcription factor CREB which can bind to a cAMP response element (CRE) in the IRS-2 promoter. However, our results directly link D-glucose
and IRS-2 levels in β-cells. We could confirm that D-glucose induces phosphorylation of CREB at Ser133 within 3-5 minutes and so did insulin (not shown), but only D-glucose induced sustained upregulation of IRS-2. Thus, activation of CREB at Ser133 might not be sufficient for a prolonged and strong increase of IRS-2 levels.

A new and original finding of the present study is that only metabolisable hexoses can increase cellular IRS-2 content. Metabolic inert hexoses and analogues of D-glucose were ineffective (Fig. 3). Thus, neither hexose translocation through glucose transporters (3-0-methyl-glucose) nor the initial phosphorylation by hexokinase (2-deoxy-D-glucose) were sufficient to enhance IRS-2 accumulation indicating that the trigger for IRS-2 accumulation requires glycolysis.

Incubation of INS-1 cells at elevated concentrations of metabolisable hexoses induced a transient phosphorylation of IRS-2 but not IRS-1. This raises the question which kinase(s) is(are) involved. Since D-glucose was able to induce phosphorylation of IRS-2 even if endogenous insulin secretion was prevented with diazoxide, the tyrosine kinases of the insulin and IGF-I receptor, respectively, are unlikely to be the mediators of this effect. We therefore suggest that metabolisable hexoses induce cytosolic kinases that are known to phosphorylate IRS proteins, such as protein kinase C (PKC), JNK or mammalian target of rapamycin (mTOR) (for review see (Pirola et al., 2004)). Indeed, a recent study has identified IRS-2 as a target of mTOR-dependent Ser/Thr phosphorylation in INS-1 cells (Briaud et al., 2004). These authors show that chronically elevated D-glucose concentrations can induce proteosomal degradation of IRS-2 which points to a possible mechanism underlying glucotoxicity. However, the mechanisms underlying this switch from upregulation to degradation of IRS-2 in β-cells by elevated D-glucose concentrations remain to be determined. It is conceivable that ER-stress-dependent activation of c-Jun N-terminal kinase (JNK) plays a role. A
recent study shows that obesity-induced ER-stress can repress IRS proteins in liver and fat (Ozcan et al., 2004). In addition, ER-stress-induced apoptosis and β-cell failure is a long discussed concept that could underlie hyperglycemia-induced β-cell exhaustion (Oyadomari et al., 2002). We are currently investigating the intracellular mechanisms, which lead to upregulation and phosphorylation of IRS-2 by D-glucose.
Acknowledgments

This work was supported by the Swiss participation in the European COST action B5. We thank Prof. C.B. Wollheim, Geneva, Switzerland, for providing the INS-1 cell line, M. Amacker, N. Boschetti and H. Seiler for their interest and support.
References

proliferation and protects human beta-cells from hyperglycemia-induced apoptosis.

beta-cell lines is involved in mediating serum-stimulated beta-cell growth. *Diabetes*, 47, 1074-1085.

Figure Legends
Fig. 1. D-glucose increases IRS-2, but not IRS-1 protein accumulation and phosphorylation in β-cells. IRS-1 and IRS-2 levels were assessed in lysates from INS-1 cells or pancreatic rat islets by Western blot analysis (A) INS-1 cells were D-glucose deprived at 1.6 mmol/l for 24 h before D-glucose was increased to 16 mmol/l for the indicated times. (B) INS-1 cells, and approximately 100 rat islets, were D-glucose deprived at 3.3 mmol/l for 6 h before D-glucose was increased to 20 mmol/l for additional 6 h. The presented immunoblots are representative of three independent experiments. (C) Cell lysates from glucose-deprived (1.6 mmol/l) or glucose-stimulated (16 mmol/l) INS-1 cells were prepared with (lane 1 and 4) or without phosphatase inhibitors (2, 3, 5 and 6). In addition, two lysates (3 and 6) were exposed to alkaline phosphatase at 37° C for 30 min.

Fig. 2. D-glucose elevates IRS-2 transcript and protein content in a time- and dose-dependent manner. (A) Glucose deprived INS-1 cells were exposed to either 1.6 or 16 mmol/l D-glucose for 0, 15, 30 min, and 1, 2 and 4 h, respectively. Total RNA was isolated and the expression of Irs-2 and actin mRNAs was assessed by Northern blotting. Each lane contains 15 μg of total RNA. Signal intensities of IRS-2 (top) and β-actin (middle) were quantified using a phosphoimager. The lower panel shows ethidium bromide-staining of 18S rRNA. The relative abundance of IRS-2 compared to actin is indicated below the autoradiographs. (B) Glucose deprived INS-1 cells were exposed to 16 mmol/l D-glucose for up to 48 h before IRS-2 abundance was assayed on immunoblots. (D) INS-1 cells were exposed for 24 h to 1.6, 5.5, 11.0, or 25.0 mmol/l D-glucose, respectively, before IRS-2 abundance was assayed on immunoblots.
Fig. 3. Metabolisable hexoses stimulate IRS-2 accumulation in a dose- and time-dependent manner in INS-1 cells. IRS-2 levels were determined in lysates from hexose-induced INS-1 cells by immunoblotting. (A) 14.4 mmol/l D- or L-glucose were added for the indicated times to INS-1 cells after culturing in 1.6 mmol/l D-glucose. (B) INS-1 cells were deprived at 1.6 mmol/l D-glucose for 24 h before exposure for 10 or 24 h to additional 14.4 mmol/l D-glucose (lanes 2, 8), L-glucose (3, 9), D-mannose (4, 10), D-galactose (5, 11), and D-fructose (6, 12), respectively, or maintained at 1.6 mmol/l glucose (1, 7, 13, 14). (C) INS-1 cells were cultured at 1.6 mmol/l D-glucose before they were exposed for 10 h to additional 14.4 mmol/l 2-deoxy-D-glucose (lane 2), 3-0-methyl-glucose (3), and D-glucose (4), respectively, or maintained at 1.6 mmol/l D-glucose (1).

Fig. 4. Insulin enhances the expression of IRS-2 in INS-1 cells but does not act as a mediator for D-glucose. (A, B and C) Cells were cultured in 1.6 mmol/l D-glucose for 16 h. Thereafter, the medium was adjusted to the indicated conditions. Lysates were analysed by Western blotting. (A) Comparison of IRS-2 expression after stimulation with 16 mmol/l D-glucose or with 100 nmol/l insulin in the presence of 1.6 mmol/l D-glucose. (B) Comparison of IRS-2 expression after stimulation with 16 mmol/l D-glucose alone or with 100 nmol/l insulin in the presence of either 1.6 or 16 mmol/l D-glucose. (C) Glucose-deprived INS-1 cells were either maintained at 1.6 mmol/l D-glucose or were exposed to 16 mmol/l D-glucose in the presence or absence of 250 mol/l diazoxide to suppress insulin secretion. The accumulated insulin concentrations in supernatant at the end of the stimulation periods are indicated below the corresponding lanes.
Fig. 1

A

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>D-glucose [mmol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.6 1.6 1.6</td>
</tr>
<tr>
<td>3</td>
<td>1.6 16 16</td>
</tr>
<tr>
<td>10</td>
<td>1.6 16 16</td>
</tr>
<tr>
<td>24</td>
<td>1.6 16 16</td>
</tr>
</tbody>
</table>

- **IRS-1**
- **IRS-2**
- **Actin**

B

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>INS-1</th>
<th>Islets</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>20</td>
<td>3.3</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>Phosphatase inhibitors</th>
<th>Phosphatase alkaline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>+ - - +</td>
<td>+ - - +</td>
</tr>
<tr>
<td>25</td>
<td>+ - - +</td>
<td>+ - - +</td>
</tr>
</tbody>
</table>

IRS-2
Fig. 2

A

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (h)</td>
<td>1.6</td>
<td>1.6</td>
<td>16</td>
<td>1.6</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

| rel. abundance | 1.0 | 0.5 | 1.0 | 1.2 | 1.0 | 1.5 |

B

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>1.6</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (h)</td>
<td>0</td>
<td>48</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>1.6</th>
<th>5.5</th>
<th>11</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (h)</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3

A

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>1.6</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>1.6</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>1.6</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (h)</td>
<td>6</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

B

C

IRS-2

actin

IRS-2

actin

IRS-2

actin
Fig. 4

A

<table>
<thead>
<tr>
<th>time (h)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-glucose [mmol/l]</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>insulin [100 nmol/l]</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>time (h)</th>
<th>0</th>
<th>1</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-glucose [mmol/l]</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>insulin [100 nmol/l]</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>D-glucose [mmol/l]</th>
<th>1.6</th>
<th>16</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>diazoxide</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>medium insulin [nmol/l]</td>
<td>9.0</td>
<td>9.2</td>
<td>13.2</td>
<td>9.5</td>
</tr>
</tbody>
</table>