UZH-Logo

On the development of plasma protein biomarkers


Surinova, Silvia; Schiess, Ralph; Hüttenhain, Ruth; Cerciello, Ferdinando; Wollscheid, Bernd; Aebersold, Ruedi (2011). On the development of plasma protein biomarkers. Journal of Proteome Research, 10(1):5-16.

Abstract

The development of plasma biomarkers has proven to be more challenging than initially anticipated. Many studies have reported lists of candidate proteins rather than validated candidate markers with an assigned performance to a specific clinical objective. Biomarker research necessitates a clear rational framework with requirements on a multitude of levels. On the technological front, the platform needs to be effective to detect low abundant plasma proteins and be able to measure them in a high throughput manner over a large amount of samples reproducibly. At a conceptual level, the choice of the technological platform and available samples should be part of an overall clinical study design that depends on a joint effort between basic and clinical research. Solutions to these needs are likely to facilitate more feasible studies. Targeted proteomic workflows based on SRM mass spectrometry show the potential of fast verification of biomarker candidates in plasma and thereby closing the gap between discovery and validation in the biomarker development pipeline. Biological samples need to be carefully chosen based on well-established guidelines either for candidate discovery in the form of disease models with optimal fidelity to human disease or for candidate evaluation as well-designed and annotated clinical cohort groups. Most importantly, they should be representative of the target population and directly address the investigated clinical question. A conceptual structure of a biomarker study can be provided in the form of several sequential phases, each having clear objectives and predefined goals. Furthermore, guidelines for reporting the outcome of biomarker studies are critical to adequately assess the quality of the research, interpretation and generalization of the results. By being attentive to and applying these considerations, biomarker research should become more efficient and lead to directly translatable biomarker candidates into clinical evaluation.

The development of plasma biomarkers has proven to be more challenging than initially anticipated. Many studies have reported lists of candidate proteins rather than validated candidate markers with an assigned performance to a specific clinical objective. Biomarker research necessitates a clear rational framework with requirements on a multitude of levels. On the technological front, the platform needs to be effective to detect low abundant plasma proteins and be able to measure them in a high throughput manner over a large amount of samples reproducibly. At a conceptual level, the choice of the technological platform and available samples should be part of an overall clinical study design that depends on a joint effort between basic and clinical research. Solutions to these needs are likely to facilitate more feasible studies. Targeted proteomic workflows based on SRM mass spectrometry show the potential of fast verification of biomarker candidates in plasma and thereby closing the gap between discovery and validation in the biomarker development pipeline. Biological samples need to be carefully chosen based on well-established guidelines either for candidate discovery in the form of disease models with optimal fidelity to human disease or for candidate evaluation as well-designed and annotated clinical cohort groups. Most importantly, they should be representative of the target population and directly address the investigated clinical question. A conceptual structure of a biomarker study can be provided in the form of several sequential phases, each having clear objectives and predefined goals. Furthermore, guidelines for reporting the outcome of biomarker studies are critical to adequately assess the quality of the research, interpretation and generalization of the results. By being attentive to and applying these considerations, biomarker research should become more efficient and lead to directly translatable biomarker candidates into clinical evaluation.

Citations

120 citations in Web of Science®
138 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 20 Jul 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:20 Jul 2012 11:15
Last Modified:05 Apr 2016 15:53
Publisher:American Chemical Society
ISSN:1535-3893
Funders:Swiss National Science Foundation (No. 31003A-130530)
Publisher DOI:10.1021/pr1008515
PubMed ID:21142170
Permanent URL: http://doi.org/10.5167/uzh-63355

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations