Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-634

Wehner, R; Michel,; Antonsen, (1996). Visual navigation in insects: coupling of egocentric and geocentric information. Journal of Experimental Biology, 199(1):129-140.

[img]
Preview
PDF
1MB

Abstract

Social hymenopterans such as bees and ants are central-place foragers; they regularly depart from and return to fixed positions in their environment. In returning to the starting point of their foraging excursion or to any other point, they could resort to two fundamentally different ways of navigation by using either egocentric or geocentric systems of reference. In the first case, they would rely on information continuously collected en route (path integration, dead reckoning), i.e. integrate all angles steered and all distances covered into a mean home vector. In the second case, they are expected, at least by some authors, to use a map-based system of navigation, i.e. to obtain positional information by virtue of the spatial position they occupy within a larger environmental framework. In bees and ants, path integration employing a skylight compass is the predominant mechanism of navigation, but geocentred landmark-based information is used as well. This information is obtained while the animal is dead-reckoning and, hence, added to the vector course. For example, the image of the horizon skyline surrounding the nest entrance is retinotopically stored while the animal approaches the goal along its vector course. As shown in desert ants (genus Cataglyphis), there is neither interocular nor intraocular transfer of landmark information. Furthermore, this retinotopically fixed, and hence egocentred, neural snapshot is linked to an external (geocentred) system of reference. In this way, geocentred information might more and more complement and potentially even supersede the egocentred information provided by the path-integration system. In competition experiments, however, Cataglyphis never frees itself of its homeward-bound vector - its safety-line, so to speak - by which it is always linked to home. Vector information can also be transferred to a longer-lasting (higher-order) memory. There is no need to invoke the concept of the mental analogue of a topographic map - a metric map - assembled by the insect navigator. The flexible use of vectors, snapshots and landmark-based routes suffices to interpret the insect's behaviour. The cognitive-map approach in particular, and the representational paradigm in general, are discussed.

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
DDC:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:1996
Deposited On:11 Feb 2008 12:16
Last Modified:20 Jul 2014 16:20
Publisher:Company of Biologists
ISSN:0022-0949
Related URLs:http://jeb.biologists.org/cgi/content/abstract/199/1/129
PubMed ID:9317483
Citations:Google Scholar™
Scopus®. Citation Count: 330

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page