# Measuring geodesics’ aperiodicity

Mätzener, Anna. Measuring geodesics’ aperiodicity. 2011, University of Zurich, Faculty of Science.

## Abstract

Aperiodicity can arise both in the setting of sequences over a finite alphabet, and that of geodesics on a compact Riemannian surface. In both cases, aperiodicity itself provides no means to measure and compare different aperiodic objects one to another. For sequences the notion of -aperiodicity, by the function , provides a means for this. The aim of this thesis was to find an analogon in the setting of geodesics. This was done by defining f-aperiodicity of geodesics. The existence of f-aperiodic geodesics was proven for a very specific setting, namely that of a quotient of the hyperbolic surface of H. This quotient was chosen in a specific way, such that a -aperiodic sequence could be chosen as the origin in the construction of the geodesic. Furthermore, this led to an easy way to define a flow-invariant subset of the unit tangent bundle of the compact Riemannian surface.

Aperiodicity can arise both in the setting of sequences over a finite alphabet, and that of geodesics on a compact Riemannian surface. In both cases, aperiodicity itself provides no means to measure and compare different aperiodic objects one to another. For sequences the notion of -aperiodicity, by the function , provides a means for this. The aim of this thesis was to find an analogon in the setting of geodesics. This was done by defining f-aperiodicity of geodesics. The existence of f-aperiodic geodesics was proven for a very specific setting, namely that of a quotient of the hyperbolic surface of H. This quotient was chosen in a specific way, such that a -aperiodic sequence could be chosen as the origin in the construction of the geodesic. Furthermore, this led to an easy way to define a flow-invariant subset of the unit tangent bundle of the compact Riemannian surface.

Detailed statistics

Item Type: Dissertation Schroeder Viktor, Kappeler Thomas 07 Faculty of Science > Institute of Mathematics 510 Mathematics English 2011 14 Aug 2012 08:17 05 Apr 2016 15:55 53 http://opac.nebis.ch/F/?local_base=EBI01&con_lng=GER&func=find-b&find_code=090&request=002033141
Permanent URL: https://doi.org/10.5167/uzh-63931

 Preview
Filetype: PDF
Size: 445kB

## TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.