UZH-Logo

Maintenance Infos

A scientific nutrition strategy improves time trial performance by ≈6% when compared with a self-chosen nutrition strategy in trained cyclists: a randomized cross-over study


Hottenrott, Kuno; Hass, Erik; Kraus, Manon; Neumann, Georg; Steiner, Martin; Knechtle, Beat (2012). A scientific nutrition strategy improves time trial performance by ≈6% when compared with a self-chosen nutrition strategy in trained cyclists: a randomized cross-over study. Applied Physiology, Nutrition, and Metabolism, 37(4):637-645.

Abstract

We investigated whether an athlete’s self-chosen nutrition strategy (A), compared with a scientifically determined one (S), led to an improved endurance performance in a laboratory time trial after an endurance exercise. S consisted of about 1000 mL·h–1 fluid, in portions of 250 mL every 15 min, 0.5 g sodium·L–1, 60 g glucose·h–1, 30 g fructose·h–1, and 5 mg caffeine·kg body mass–1. Eighteen endurance-trained cyclists (16 male; 2 female) were tested using a randomized crossover-design at intervals of 2 weeks, following either A or S. After a warm-up, a maximal oxygen uptake test was performed. Following a 30-min break, a 2.5-h endurance exercise on a bicycle ergometer was carried out at 70% maximal oxygen uptake. After 5 min of rest, a time trial of 64.37 km (40 miles) was completed. The ingested nutrition was recorded every 15 min. In S, the athletes completed the time trial faster (128 vs. 136 min; p ≤ 0.001) and with a significantly higher power output (212 vs. 184 W; p ≤ 0.001). The intake of fluid, energy (carbohydrate-, mono-, and disaccharide), and sodium was significantly higher in S compared with A (p ≤ 0.001) during the endurance exercise. In the time trial, only sodium intake was significantly higher in S (p ≤ 0.001). We concluded that a time trial performance after a 2.5-h endurance exercise in a laboratory setting was significantly improved following a scientific nutrition strategy.

We investigated whether an athlete’s self-chosen nutrition strategy (A), compared with a scientifically determined one (S), led to an improved endurance performance in a laboratory time trial after an endurance exercise. S consisted of about 1000 mL·h–1 fluid, in portions of 250 mL every 15 min, 0.5 g sodium·L–1, 60 g glucose·h–1, 30 g fructose·h–1, and 5 mg caffeine·kg body mass–1. Eighteen endurance-trained cyclists (16 male; 2 female) were tested using a randomized crossover-design at intervals of 2 weeks, following either A or S. After a warm-up, a maximal oxygen uptake test was performed. Following a 30-min break, a 2.5-h endurance exercise on a bicycle ergometer was carried out at 70% maximal oxygen uptake. After 5 min of rest, a time trial of 64.37 km (40 miles) was completed. The ingested nutrition was recorded every 15 min. In S, the athletes completed the time trial faster (128 vs. 136 min; p ≤ 0.001) and with a significantly higher power output (212 vs. 184 W; p ≤ 0.001). The intake of fluid, energy (carbohydrate-, mono-, and disaccharide), and sodium was significantly higher in S compared with A (p ≤ 0.001) during the endurance exercise. In the time trial, only sodium intake was significantly higher in S (p ≤ 0.001). We concluded that a time trial performance after a 2.5-h endurance exercise in a laboratory setting was significantly improved following a scientific nutrition strategy.

Citations

5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 13 Aug 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of General Practice
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:13 Aug 2012 14:29
Last Modified:05 Apr 2016 15:55
Publisher:Canadian Science Publishing
ISSN:1715-5312
Publisher DOI:10.1139/h2012-028
PubMed ID:22587540
Permanent URL: http://doi.org/10.5167/uzh-64194

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 583kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations