Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-64228

Roscher, Christiane; Schumacher, Jens; Gubsch, Marlén; Lipowsky, Annett; Weigelt, Alexandra; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef (2012). Using plant functional traits to explain diversity–productivity relationships. PLoS ONE, 7(5):e36760.

[img]
Preview
Published Version
PDF
1MB

View at publisher

Abstract

Background: The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects.
Methodology/Principal Findings: We used two community-wide measures of plant functional composition, (1) community- weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (,1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations.
Conclusions/Significance: Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production.

Citations

18 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 16 Aug 2012
31 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
DDC:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:18 May 2012
Deposited On:16 Aug 2012 11:56
Last Modified:12 Nov 2014 12:24
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Publisher DOI:10.1371/journal.pone.0036760
PubMed ID:22623961

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page